An in-situ technique for the direct structural characterization of biofouling in membrane filtration
Name:
Direct structural charact of biofouling JMS 2.pdf
Size:
1.209Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
Water Desalination and Reuse Research Center (WDRC)Biological and Environmental Sciences and Engineering (BESE) Division
Environmental Science and Engineering Program
Date
2019-04-22Online Publication Date
2019-04-22Print Publication Date
2019-08Permanent link to this record
http://hdl.handle.net/10754/631997
Metadata
Show full item recordAbstract
In the present work, a convenient and direct technique which enables to characterize the intrinsic structure and the mechanical properties of the biofilm without altering its chemical and physical properties is proposed. By utilizing the Optical Coherence Tomography (OCT) as a structural imaging tool coupled with an advance mathematical framework, thickness, micro-porosity, normal stress-strain curve, bulk modulus and total permeability of the biofilm structures are determined. The accuracy of this mathematical technique for the in situ characterization is validated by analyzing two different membrane structures for porosity and permeability values against the mercury intrusion porosimetry method. Three-dimensional images of biofouling were obtained with high resolution aided to numerically analyze the intrinsic biofilm structure at microscale. Growth of biofilm in a dead-end filtration experimental setup was investigated by varying the feed flow rate which allowed uniform compression and decompression to compute normal stress-strain relation of the evolving biofilm structure. At early development of biofilm (day 3), the thickness and normal stress/strain curve showed that the biofilm structure behave similar to elastic material. However, hysteresis-like trend starts to appear with the growth of biofilm suggesting the deviation of biofilm properties to viscoelastic nature at day 8. The microstructure porosity increased from 0.214 (day 3) to 0.482 (day 8) at a feed flow rate of 15 mL/min. The total membrane/biofilm permeability decreased with biofilm age to reach 5.19 × 10−15 m2 at day 8 at the same flow rate, leading to a reduction of permeate flux over time. All the structural properties were found to be time dependent as the biofilm continuously evolved.Citation
Kerdi S, Qamar A, Alpatova A, Ghaffour N (2019) An in-situ technique for the direct structural characterization of biofouling in membrane filtration. Journal of Membrane Science. Available: http://dx.doi.org/10.1016/j.memsci.2019.04.051.Sponsors
The research reported in this paper was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The authors acknowledge help, assistance and support from the Water Desalination and Reuse Center (WDRC) staff.Publisher
Elsevier BVJournal
Journal of Membrane ScienceAdditional Links
https://www.sciencedirect.com/science/article/pii/S0376738819304521ae974a485f413a2113503eed53cd6c53
10.1016/j.memsci.2019.04.051