Secrecy Outage Analysis of Mixed RF-FSO Systems With Channel Imperfection
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2018-06-15Online Publication Date
2018-06-15Print Publication Date
2018-06Permanent link to this record
http://hdl.handle.net/10754/631815
Metadata
Show full item recordAbstract
We analyze the secrecy outage performance of a mixed radio frequency-free space optical (RF-FSO) transmission system with imperfect channel state information (CSI). We deal with a single input multiple output (SIMO) wiretap model, where a base station (works as the relay) forwards the signal transmitted from a user (source) to a data center (works as the destination), while an eavesdropper wiretaps the confidential information by decoding the received signal. Both the relay and the eavesdropper are armed with multiple antennas and maximal ratio combining scheme is utilized to improve the received signal-to-noise ratio (SNR). The effects of imperfect CSI of the RF link and the FSO link, misalignment, detection schemes, and relaying schemes on the secrecy outage performance of mixed RF-FSO systems are studied. Firstly, the cumulative distribution function and probability density function of FSO links with pointing error and two different detection technologies are derived. Then we derive the closed-form expressions for the lower bound of the secrecy outage probability (SOP) with fixed-gain relaying and variable-gain relaying schemes. Furthermore, asymptotic results for SOP are investigated by exploiting the unfolding of Meijer's G-function when the electrical SNR of FSO link approaches infinity. Finally, Monte-Carlo simulation results are presented to corroborate the correctness of the analysis.Citation
Lei H, Luo H, Park K-H, Ren Z, Pan G, et al. (2018) Secrecy Outage Analysis of Mixed RF-FSO Systems With Channel Imperfection. IEEE Photonics Journal 10: 1–13. Available: http://dx.doi.org/10.1109/JPHOT.2018.2835562.Sponsors
National Natural Science Foundation of China[61471076]China Scholarship Council[201607845004]
Program for Changjiang Scholars and Innovative Research Team in University[IRT_16R72]
Key Lab of Chongqing Municipal Education Commission
Project of Fundamental and Frontier Research Plan of Chongqing[cstc2015jcyjBX0085, cstc2017jcyjAX0204]
Scientific and Technological Research Program of Chongqing Municipal Education Commission[KJ1704088, KJ1600413]
Journal
IEEE Photonics JournalAdditional Links
https://ieeexplore.ieee.org/document/8358703/ae974a485f413a2113503eed53cd6c53
10.1109/JPHOT.2018.2835562