Show simple item record

dc.contributor.advisorSarathy, Mani
dc.contributor.authorAbdul Jameel, Abdul Gani
dc.date.accessioned2019-03-26T14:35:51Z
dc.date.available2019-03-26T14:35:51Z
dc.date.issued2019-03
dc.identifier.citationAbdul Jameel, A. G. (2019). A functional group approach for predicting fuel properties. KAUST Research Repository. https://doi.org/10.25781/KAUST-ZBB21
dc.identifier.doi10.25781/KAUST-ZBB21
dc.identifier.urihttp://hdl.handle.net/10754/631722
dc.description.abstractExperimental measurement of fuel properties are expensive, require sophisticated instrumentation and are time consuming. Mathematical models and approaches for predicting fuel properties can help reduce time and costs. A new approach for characterizing petroleum fuels called the functional group approach was developed by disassembling the innumerable fuel molecules into a finite number of molecular fragments or ‘functional groups’. This thesis proposes and tests the following hypothesis, Can a fuels functional groups be used to predict its combustion properties? Analytical techniques like NMR spectroscopy that are ideally suited to identify and quantify the various functional groups present in the fuels was used. Branching index (BI), a new parameter that quantifies the degree and quality of branching in a molecule was defined. The proposed hypothesis was tested on three classes of fuels namely gasolines, diesel and heavy fuel oil. Five key functional groups namely paraffinic CH3, paraffinic CH2, paraffinic CH, naphthenic CH-CH2 and aromatic C-CH groups along with BI were used as matching targets to formulate simple surrogates of one or two molecules that reproduce the combustion characteristics. Using this approach, termed as the minimalist functional group (MFG) approach surrogates were formulated for a number of standard gasoline, diesel and jet fuels. The surrogates were experimentally validated using measurements from Ignition quality tester (IQT), Rapid compression machine (RCM) and smoke point (SP) apparatus. The functional group approach was also employed to predict research octane number (RON) and motor octane number (MON) of fuels blended with ethanol using artificial neural networks (ANN). A multiple linear regression (MLR) based model for predicting derived cetane number (DCN) of hydrocarbon fuels was also developed. The functional group approach was also extended to study heavy fuel oil (HFO), a viscous residual fuel that contains heteroatoms like S, N and O. It is used in ships as marine fuel and also in boilers for electricity generation. 1H NMR and 13C NMR measurements were made to analyze the average molecular parameters (AMP) of HFO molecules. The fuel was divided into 19 different functional groups and their concentrations were calculated from the AMP values. A surrogate molecule that represents the average structure of HFO was then formulated and its properties were predicted using QSPR approaches.
dc.language.isoen
dc.subjectFunctional Group, NMR, Surrogate, Cetane Number, Octane Number, Heavy fuel oil
dc.titleA functional group approach for predicting fuel properties
dc.typeDissertation
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberRoberts, William L.
dc.contributor.committeememberSzekely, Gyorgy
dc.contributor.committeememberWon, Sang Hee
thesis.degree.disciplineChemical and Biological Engineering
thesis.degree.nameDoctor of Philosophy
refterms.dateFOA2019-03-26T14:35:52Z
kaust.request.doiyes


Files in this item

Thumbnail
Name:
Abdul Gani_PhD Thesis final_format corrected_less than 5 mb.pdf
Size:
4.002Mb
Format:
PDF
Description:
Abdul Giani Abdul Jameel - Dissertation Paper

This item appears in the following Collection(s)

Show simple item record