Show simple item record

dc.contributor.authorSingh, Eshan
dc.contributor.authorJaasim, Mohammed
dc.contributor.authorIchim, Adrian
dc.contributor.authorMorganti, Kai
dc.contributor.authorDibble, Robert W.
dc.date.accessioned2019-03-14T14:13:45Z
dc.date.available2019-03-14T14:13:45Z
dc.date.issued2018-09-10
dc.identifier.citationSingh E, Mubarak Ali MJ, Ichim A, Morganti K, Dibble R (2018) Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition. SAE Technical Paper Series. Available: http://dx.doi.org/10.4271/2018-01-1678.
dc.identifier.doi10.4271/2018-01-1678
dc.identifier.urihttp://hdl.handle.net/10754/631598
dc.description.abstractStochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends. Overall, this study reinforces that interactions between the fuel spray and oil on the cylinder liner can be an important contributor towards stochastic pre-ignition. The occurrence of pre-ignition, as shown by CFD calculations, is successful after completion of two stages. The first stage involves the formation of precursors from interactions between the fuel spray and oil on the cylinder liner. This is shown to be dependent upon the mass of the fuel impinging on the cylinder liner. The second stage involves the ignition of the precursor, which is shown to be dependent upon the temperature of the air-fuel mixture near top dead center.
dc.description.sponsorshipThe authors wish to acknowledge funding from the Clean Combustion Research Center at King Abdullah University of Science and Technology and Saudi Aramco under the FUELCOM II program. The authors also thank Nimal Naser for discussions on the project. The simulations utilized the KAUST supercomputing facility provided by KASUT Information Technology Service. We thank Convergent Science for providing the CONVERGE licenses.
dc.publisherSAE International
dc.relation.urlhttps://saemobilus.sae.org/content/2018-01-1678
dc.titleEffect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition
dc.typeConference Paper
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalSAE Technical Paper Series
dc.conference.date2018-09-17 to 2018-09-19
dc.conference.nameSAE 2018 International Powertrains, Fuels and Lubricants Meeting, FFL 2018
dc.conference.locationHeidelberg, DEU
dc.contributor.institutionSaudi Aramco, , Saudi Arabia
kaust.personSingh, Eshan
kaust.personJaasim, Mohammed
kaust.personIchim, Adrian
kaust.personDibble, Robert W.


This item appears in the following Collection(s)

Show simple item record