Show simple item record

dc.contributor.authorNugraha, Mohamad I.
dc.contributor.authorKim, Hyunho
dc.contributor.authorSun, Bin
dc.contributor.authorHaque, Mohammed
dc.contributor.authorde Arquer, Francisco Pelayo Garcia
dc.contributor.authorVillalva, Diego Rosas
dc.contributor.authorEl Labban, Abdulrahman
dc.contributor.authorSargent, Edward H.
dc.contributor.authorAlshareef, Husam N.
dc.contributor.authorBaran, Derya
dc.date.accessioned2019-03-14T14:08:44Z
dc.date.available2019-03-14T14:08:44Z
dc.date.issued2019-02-14
dc.identifier.citationNugraha MI, Kim H, Sun B, Haque MA, de Arquer FPG, et al. (2019) Low-Temperature-Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. Advanced Energy Materials: 1803049. Available: http://dx.doi.org/10.1002/aenm.201803049.
dc.identifier.issn1614-6832
dc.identifier.doi10.1002/aenm.201803049
dc.identifier.urihttp://hdl.handle.net/10754/631573
dc.description.abstractColloidal quantum dots (CQDs) are demonstrated to be promising materials to realize high-performance thermoelectrics owing to their low thermal conductivity. The most studied CQD films, however, are using long ligands that require high processing and operation temperature (>400 °C) to achieve optimum thermoelectric performance. Here the thermoelectric properties of CQD films cross-linked using short ligands that allow strong inter-QD coupling are reported. Using the ligands, p-type thermoelectric solids are demonstrated with a high Seebeck coefficient and power factor of 400 μV K−1 and 30 µW m−1 K−2, respectively, leading to maximum ZT of 0.02 at a lower measurement temperature (<400 K) and lower processing temperature (<300 °C). These ligands further reduce the annealing temperature to 175 °C, significantly increasing the Seebeck coefficient of the CQD films to 580 μV K−1. This high Seebeck coefficient with a superior ZT near room temperature compared to previously reported high temperature-annealed CQD films is ascribed to the smaller grain size, which enables the retainment of quantum confinement and significantly increases the hole effective mass in the films. This study provides a pathway to approach quantum confinement for achieving a high Seebeck coefficient yet strong inter-QD coupling, which offers a step toward low-temperature-processed high-performance thermoelectric generators.
dc.description.sponsorshipThe authors acknowledge KAUST Solar Center Competitive Fund (CCF) and Competitive Research Grant (CRG) for financial support.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201803049
dc.subjectcolloidal quantum dots
dc.subjectpower factor
dc.subjectquantum dot thermoelectrics
dc.subjectsolution processable materials
dc.subjectthermoelectrics
dc.titleLow-Temperature-Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics
dc.typeArticle
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Energy Materials
dc.contributor.institutionDepartment of Electrical and Computer Engineering; University of Toronto; Toronto Ontario M5S 3G4 Canada
kaust.personNugraha, Mohamad I.
kaust.personKim, Hyunho
kaust.personHaque, Mohammed
kaust.personVillalva, Diego Rosas
kaust.personEl Labban, Abdulrahman
kaust.personAlshareef, Husam N.
kaust.personBaran, Derya
dc.date.published-online2019-02-14
dc.date.published-print2019-04


This item appears in the following Collection(s)

Show simple item record