Show simple item record

dc.contributor.authorAydin, Erkan
dc.contributor.authorTroughton, Joel
dc.contributor.authorde Bastiani, Michele
dc.contributor.authorUgur, Esma
dc.contributor.authorSajjad, Muhammad
dc.contributor.authorAlzahrani, Areej A.
dc.contributor.authorNeophytou, Marios
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorLaquai, Frédéric
dc.contributor.authorBaran, Derya
dc.contributor.authorDe Wolf, Stefaan
dc.date.accessioned2019-03-04T08:39:21Z
dc.date.available2019-03-04T08:39:21Z
dc.date.issued2018-10-18
dc.identifier.citationAydin E, Troughton J, De Bastiani M, Ugur E, Sajjad M, et al. (2018) Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Applied Energy Materials 1: 6227–6233. Available: http://dx.doi.org/10.1021/acsaem.8b01263.
dc.identifier.issn2574-0962
dc.identifier.issn2574-0962
dc.identifier.doi10.1021/acsaem.8b01263
dc.identifier.urihttp://hdl.handle.net/10754/631314
dc.description.abstractNickel oxide (NiOx) is a promising hole transport layer (HTL) for perovskite solar cells (PSCs), as it combines good chemical stability, high broadband optical transparency, and a high work function. Excellent power conversion efficiencies (PCEs) have already been reported using solution-processed NiOx. However, solution-based techniques usually require high-temperature postannealing to achieve the required HTL properties of NiOx, which jeopardizes its use for many applications, such as monolithic tandem solar cells. To resolve this issue, we developed room-temperature-sputtered NiOx and demonstrated p–i–n PSCs with 17.6% PCE (with negligible hysteresis), which are comparable to the best PSCs using sputtered and annealed NiOx without heteroatom doping. Through detailed characterization and density functional theory (DFT) analysis, we explored the electrical and optical properties of the obtained NiOx films and find that they are strongly linked with the specific defect chemistry of this material. Finally, in view of its use in perovskite/silicon tandem solar cells, we find that direct sputtering on random-pyramid textured silicon wafers results in highly conformal NiOx films.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-CARF URF/1/3079-33-01.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsaem.8b01263
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsaem.8b01263.
dc.subjectconformal deposition
dc.subjectlarge area
dc.subjectnickel oxide
dc.subjectperovskite solar cells
dc.subjectp−i−n perovskite device configuration
dc.subjectroom-temperature processing
dc.subjectsputtering
dc.titleRoom-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells
dc.typeArticle
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalACS Applied Energy Materials
dc.eprint.versionPost-print
kaust.personAydin, Erkan
kaust.personTroughton, Joel
kaust.personde Bastiani, Michele
kaust.personUgur, Esma
kaust.personSajjad, Muhammad
kaust.personAlzahrani, Areej A.
kaust.personNeophytou, Marios
kaust.personSchwingenschlögl, Udo
kaust.personLaquai, Frederic
kaust.personBaran, Derya
kaust.personDe Wolf, Stefaan
kaust.grant.numberOSR-CARF URF/1/3079-33-01
dc.date.published-online2018-10-18
dc.date.published-print2018-11-26


Files in this item

Thumbnail
Name:
Aydin_ACS Appl Energy Mater 2018_accepted version.pdf
Size:
989.3Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record