Show simple item record

dc.contributor.authorGao, Xu
dc.contributor.authorShahbaba, Babak
dc.contributor.authorOmbao, Hernando
dc.date.accessioned2019-03-04T07:16:02Z
dc.date.available2019-03-04T07:16:02Z
dc.date.issued2018-10-02
dc.identifier.citationGao X, Shahbaba B, Ombao H (2018) Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States. Journal of Classification 35: 549–579. Available: http://dx.doi.org/10.1007/s00357-018-9268-8.
dc.identifier.issn0176-4268
dc.identifier.issn1432-1343
dc.identifier.doi10.1007/s00357-018-9268-8
dc.identifier.urihttp://hdl.handle.net/10754/631294
dc.description.abstractMotivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.
dc.description.sponsorshipThe authors thank the anonymous reviewers for providing insightful comments and suggestions. This work was supported in part by grants awards to H. Ombao (NSF DMS 1509023 and NSF MMS 1461543) and B. Shahbaba (NIH R01-AI107034 and NSF DMS1622490).
dc.publisherSpringer Nature
dc.relation.urlhttps://link.springer.com/article/10.1007%2Fs00357-018-9268-8
dc.rightsArchived with thanks to Journal of Classification
dc.subjectBinary time series
dc.subjectClassification
dc.subjectGaussian process
dc.subjectLatent process
dc.subjectSleep state
dc.titleModeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States
dc.typeArticle
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentStatistics Program
dc.identifier.journalJournal of Classification
dc.eprint.versionPost-print
dc.contributor.institutionUniversity of California, Irvine, CA, , United States
dc.identifier.arxivid1711.05466
kaust.personOmbao, Hernando
refterms.dateFOA2019-10-02T00:00:00Z
dc.date.published-online2018-10-02
dc.date.published-print2018-10


Files in this item

Thumbnail
Name:
GPBinary_arxiv.pdf
Size:
428.4Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record