Show simple item record

dc.contributor.authorWei, Min
dc.contributor.authorLi, Jing
dc.contributor.authorChu, Wei
dc.contributor.authorWang, Ning
dc.date.accessioned2019-02-27T09:49:05Z
dc.date.available2019-02-27T09:49:05Z
dc.date.issued2019-01-09
dc.identifier.citationWei M, Li J, Chu W, Wang N (2019) Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. Journal of Energy Chemistry 38: 26–33. Available: http://dx.doi.org/10.1016/j.jechem.2019.01.003.
dc.identifier.issn2095-4956
dc.identifier.doi10.1016/j.jechem.2019.01.003
dc.identifier.urihttp://hdl.handle.net/10754/631260
dc.description.abstractAn OH-slow-release strategy was established to controllably tune the (α- and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to regulate the pH of the solution and slow down the release of OH, effectively regulating the phase, nanostructure, interlayer spacing, surface area, thickness, and the performance of binary Ni–Co hydroxide. The ion-slow-release mechanism is conducive to the formation of α-phase with larger interlayer spacing and thinner flakes rather than β-phase. Attributed to the enlarged interlayer spacing, thinner nanosheets, and more exposed active sites, the resultant α-phase hydroxides (NCNS-5.2), displayed much lower over potential of 285 mV with respect to the dense-stacked β-phase hydroxides (362 mV) for OER at 10 mA/cm. It also exhibited high specific capacitance of 1474.2 F/g, when tested at 0.5 A/g within a voltage range of 0–0.45 V vs. Hg/HgO. This composite was also stable for water oxidation reaction and supercapacitor. The proof-of-concept of using controlled-release agent may provide suggestive insights for the material innovation and a variety of applications.
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (21476145). The authors thank Prof. Dehui Deng, Prof. Dan Xiao, and Dr. Wen Yang for the valuable discussion and helps.
dc.publisherElsevier BV
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S2095495618310489
dc.subjectLayered double hydroxides (LDHs)
dc.subjectNanosheets
dc.subjectOxygen evolution reaction
dc.subjectSlow-release strategy
dc.subjectSupercapacitor
dc.titlePhase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances
dc.typeArticle
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of Energy Chemistry
dc.contributor.institutionCollaboration Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, Fujian, 361005, , China
dc.contributor.institutionSchool of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, , China
dc.contributor.institutionDepartment of Chemical Engineering, Tsinghua University, Beijing, 100084, , China
kaust.personWang, Ning
dc.date.published-online2019-01-09
dc.date.published-print2019-11


This item appears in the following Collection(s)

Show simple item record