Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances

Type
Article

Authors
Wei, Min
Li, Jing
Chu, Wei
Wang, Ning

KAUST Department
Physical Science and Engineering (PSE) Division

Online Publication Date
2019-01-09

Print Publication Date
2019-11

Date
2019-01-09

Abstract
An OH-slow-release strategy was established to controllably tune the (α- and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to regulate the pH of the solution and slow down the release of OH, effectively regulating the phase, nanostructure, interlayer spacing, surface area, thickness, and the performance of binary Ni–Co hydroxide. The ion-slow-release mechanism is conducive to the formation of α-phase with larger interlayer spacing and thinner flakes rather than β-phase. Attributed to the enlarged interlayer spacing, thinner nanosheets, and more exposed active sites, the resultant α-phase hydroxides (NCNS-5.2), displayed much lower over potential of 285 mV with respect to the dense-stacked β-phase hydroxides (362 mV) for OER at 10 mA/cm. It also exhibited high specific capacitance of 1474.2 F/g, when tested at 0.5 A/g within a voltage range of 0–0.45 V vs. Hg/HgO. This composite was also stable for water oxidation reaction and supercapacitor. The proof-of-concept of using controlled-release agent may provide suggestive insights for the material innovation and a variety of applications.

Citation
Wei M, Li J, Chu W, Wang N (2019) Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. Journal of Energy Chemistry 38: 26–33. Available: http://dx.doi.org/10.1016/j.jechem.2019.01.003.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (21476145). The authors thank Prof. Dehui Deng, Prof. Dan Xiao, and Dr. Wen Yang for the valuable discussion and helps.

Publisher
Elsevier BV

Journal
Journal of Energy Chemistry

DOI
10.1016/j.jechem.2019.01.003

Additional Links
https://www.sciencedirect.com/science/article/pii/S2095495618310489

Permanent link to this record