Show simple item record

dc.contributor.authorFranzone, P. Colli
dc.contributor.authorPavarino, L. F.
dc.contributor.authorScacchi, S.
dc.contributor.authorZampini, Stefano
dc.date.accessioned2019-02-27T09:48:33Z
dc.date.available2019-02-27T09:48:33Z
dc.date.issued2019-01-05
dc.identifier.citationFranzone PC, Pavarino LF, Scacchi S, Zampini S (2018) Scalable Cardiac Electro-Mechanical Solvers and Reentry Dynamics. Domain Decomposition Methods in Science and Engineering XXIV: 31–43. Available: http://dx.doi.org/10.1007/978-3-319-93873-8_3.
dc.identifier.issn1439-7358
dc.identifier.issn2197-7100
dc.identifier.doi10.1007/978-3-319-93873-8_3
dc.identifier.urihttp://hdl.handle.net/10754/631257
dc.description.abstractWe present a scalable solver for the three-dimensional cardiac electro-mechanical coupling (EMC) model, which represents, currently, the most complete mathematical description of the interplay between the electrical and mechanical phenomena occurring during a heartbeat. The most computational demanding parts of the EMC model are: the electrical current flow model of the cardiac tissue, called Bidomain model, consisting of two non-linear partial differential equations of reaction-diffusion type; the quasi-static finite elasticity model for the deformation of the cardiac tissue. Our finite element parallel solver is based on: Block Jacobi and Multilevel Additive Schwarz preconditioners for the solution of the linear systems deriving from the discretization of the Bidomain equations; Newton-Krylov-Algebraic-Multigrid or Newton-Krylov-BDDC algorithms for the solution of the non-linear algebraic system deriving from the discretization of the finite elasticity equations. Three-dimensional numerical test on two linux clusters show the effectiveness and scalability of the EMC solver in simulating both physiological and pathological cardiac dynamics.
dc.publisherSpringer Nature
dc.relation.urlhttps://link.springer.com/chapter/10.1007%2F978-3-319-93873-8_3
dc.titleScalable Cardiac Electro-Mechanical Solvers and Reentry Dynamics
dc.typeBook Chapter
dc.contributor.departmentExtreme Computing Research Center
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalDomain Decomposition Methods in Science and Engineering XXIV
dc.contributor.institutionUniversity of Pavia, Dept. of Mathematics, Pavia, , Italy
dc.contributor.institutionUniversity of Milano, Dept. of Mathematics, Milano, , Italy
kaust.personZampini, Stefano
dc.date.published-online2019-01-05
dc.date.published-print2018


This item appears in the following Collection(s)

Show simple item record