Show simple item record

dc.contributor.authorAlpatova, Alla
dc.contributor.authorAlsaadi, A.S.
dc.contributor.authorAlharthi, M.
dc.contributor.authorLee, Jung Gil
dc.contributor.authorGhaffour, NorEddine
dc.date.accessioned2019-02-25T07:58:39Z
dc.date.available2019-02-25T07:58:39Z
dc.date.issued2019-02-22
dc.identifier.citationAlpatova A, Alsaadi AS, Alharthi M, Lee J-G, Ghaffour N (2019) Co-axial hollow fiber module for air gap membrane distillation. Journal of Membrane Science 578: 172–182. Available: http://dx.doi.org/10.1016/j.memsci.2019.02.052.
dc.identifier.issn0376-7388
dc.identifier.doi10.1016/j.memsci.2019.02.052
dc.identifier.urihttp://hdl.handle.net/10754/631166
dc.description.abstractA novel air gap membrane distillation (AGMD) module in which non-porous polymeric hollow fiber condensers (i.e., heat exchangers) were inserted inside the porous hollow fiber membranes was developed. In this module the hot feed was circulated on the outer side of the membrane's lumen and the coolant was circulated counter-currently inside the condenser fibers. The condensation of water vapor occurred in the air gap between the inner surface of the membrane fibers and the outer surface of the condenser fibers. By varying the number of condenser fibers inside the lumen, a different ratio of membrane fiber active surface area to the total surface area of condenser fibers and corresponding packing densities were achieved and examined in desalination of Red Sea water. The effect of membrane type on process performance was investigated with three different hollow fiber membranes with varied wall thickness (two capillary and one tubular). At a feed temperature of 85 °C, the water vapor flux increased from 12 kg/m2h to 18 kg/m2h with the increase in condenser fibers packing density from 9% to 28%, and then decreased to 14 kg/m2h when packing density was increased to 36% due to condensing surface constrain inside the lumen. A higher efficiency of the AGMD process was observed in the case of capillary membranes as compared to tubular membranes due to reduction in wall thickness which facilitated lower mass transfer resistance. The effect of operating conditions including feed and coolant flow rates and temperature difference between the feed and coolant solutions was also investigated. The increase in the feed flow rate had significant effect on vapor flux comparing to that of coolant for all tested AGMD configurations. This effect was more pronounced at high feed temperatures. Based on observed results, an optimal module design was suggested.
dc.description.sponsorshipThe research reported in this paper was supported by King Abdullah University of Science and Technology [42], Saudi Arabia. The authors acknowledge help, assistance and support from the Water Desalination and Reuse Center (WDRC) staff.
dc.publisherElsevier BV
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S037673881831250X
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in Journal of Membrane Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Membrane Science, [, , (2019-02-22)] DOI: 10.1016/j.memsci.2019.02.052 . © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHollow fiber AGMD module
dc.subjectCompact module
dc.subjectEvaporation/condensation surface area
dc.subjectInternal heat recovery
dc.subjectThermal efficiency
dc.subjectDesalination
dc.titleCo-axial hollow fiber module for air gap membrane distillation
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalJournal of Membrane Science
dc.eprint.versionPost-print
dc.contributor.institutionChemical Engineering Department, University of Jeddah, Jeddah 21589, Saudi Arabia
kaust.personAlpatova, Alla
kaust.personAlharthi, M.
kaust.personLee, Jung Gil
kaust.personGhaffour, Noreddine
dc.date.published-online2019-02-22
dc.date.published-print2019-05


Files in this item

Thumbnail
Name:
Co-axial hollow fiber paper - JMS R1 unmarked.pdf
Size:
1.004Mb
Format:
PDF
Description:
Accepted Manuscript
Thumbnail
Name:
1-s2.0-S037673881831250X-fx1.jpg
Size:
25.68Kb
Format:
JPEG image
Description:
Graphical abstract

This item appears in the following Collection(s)

Show simple item record