Show simple item record

dc.contributor.authorHoel, H.
dc.contributor.authorKarlsen, K. H.
dc.contributor.authorRisebro, N. H.
dc.contributor.authorStorrøsten, E. B.
dc.date.accessioned2019-01-13T10:07:16Z
dc.date.available2019-01-13T10:07:16Z
dc.date.issued2019-06-14
dc.identifier.citationHoel, H., Karlsen, K. H., Risebro, N. H., & Storrøsten, E. B. (2019). Numerical methods for conservation laws with rough flux. Stochastics and Partial Differential Equations: Analysis and Computations. doi:10.1007/s40072-019-00145-7
dc.identifier.doi10.1007/s40072-019-00145-7
dc.identifier.urihttp://hdl.handle.net/10754/630807
dc.description.abstractFinite volume methods are proposed for computing approximate pathwise entropy/kinetic solutions to conservation laws with flux functions driven by low-regularity paths. For a convex flux, it is demonstrated that driving path oscillations may lead to “cancellations” in the solution. Making use of this property, we show that for α-Hölder continuous paths the convergence rate of the numerical methods can improve from O(COST -γ) , for some γ∈ [α/ (12 - 8 α) , α/ (10 - 6 α)] , with α∈ (0 , 1) , to O(COST -min(1/4,α/2)). Numerical examples support the theoretical results.
dc.description.sponsorshipThis work received supported by the Research Council of Norway through the project Stochastic Conservation Laws (250674/F20) and by the KAUST CRG4 Award Ref: 2584.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/10.1007/s40072-019-00145-7
dc.titleNumerical methods for conservation laws with rough flux
dc.typeArticle
dc.identifier.journalStochastics and Partial Differential Equations: Analysis and Computations
dc.eprint.versionPre-print
dc.contributor.institutionMathematics Institute of Computational Science and Engineering, École polytechnique fédérale de Lausanne, EPFL / SB / MATH-CSQI, MA C1 644 (Bâtiment MA), Station 8, 1015, Lausanne, Switzerland
dc.contributor.institutionDepartment of mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316, Oslo, Norway
dc.identifier.arxivid1802.00708
kaust.grant.numberCRG4 Award Ref: 2584
dc.versionv1
refterms.dateFOA2019-01-13T10:07:17Z
dc.date.published-online2019-06-14
dc.date.published-print2020-03
dc.date.posted2018-02-02


Files in this item

This item appears in the following Collection(s)

Show simple item record