Show simple item record

dc.contributor.authorPapapostolou, Vassilios
dc.contributor.authorChakraborty, Nilanjan
dc.contributor.authorKlein, Markus
dc.contributor.authorIm, Hong G.
dc.date.accessioned2018-12-31T13:44:59Z
dc.date.available2018-12-31T13:44:59Z
dc.date.issued2018-10-04
dc.identifier.citationPapapostolou V, Chakraborty N, Klein M, Im HG (2018) Effects of Reaction Progress Variable Definition on the Flame Surface Density Transport Statistics and Closure for Different Combustion Regimes. Combustion Science and Technology: 1–18. Available: http://dx.doi.org/10.1080/00102202.2018.1523152.
dc.identifier.issn0010-2202
dc.identifier.issn1563-521X
dc.identifier.doi10.1080/00102202.2018.1523152
dc.identifier.urihttp://hdl.handle.net/10754/630577
dc.description.abstractThe implications of the choice of reaction progress variable on the performances of the flame surface density (FSD) based mean reaction rate closure and the well-established sub-models of the FSD transport have been analysed in context of Reynolds Averaged Navier Stokes simulations. For this purpose, a detailed chemistry direct numerical simulation (DNS) database of freely-propagating statistically planar air flames (with an equivalence ratio of 0.7) spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion has been considered. The FSD and the unclosed terms of its transport equation have been analysed for reaction progress variables defined based on normalised and mass fractions and temperature. The performances of the closures for turbulent flux of FSD, and tangential strain rate term have been found to be mostly unaffected by the choice of reaction progress variable. However, the well-established existing models for the unresolved tangential strain rate term have been found not to perform well for the cases representing the CF and TRZ regimes of premixed combustion. The performance of a well-established existing model for the combined propagation and curvature terms has been found to be significantly dependent on the choice of reaction progress variable. Furthermore, the surface-averaged value of the density-weighted displacement speed cannot be approximated by the corresponding unstretched laminar flame value especially for the flames in the BRZ regime. Detailed explanations have been provided for the observed behaviours of the FSD based reaction rate closure and sub-models for the unclosed terms of the FSD transport equation in different combustion regimes for different choices of reaction progress variable.
dc.description.sponsorshipThe work made use of computational resources at KAUST Supercomputing Laboratory and ARCHER.
dc.publisherInforma UK Limited
dc.relation.urlhttps://www.tandfonline.com/doi/full/10.1080/00102202.2018.1523152
dc.relation.urlhttps://eprint.ncl.ac.uk/fulltext.aspx?url=251104/1A0B9F3D-46CF-440E-8991-E04DD0D89A7B.pdf&pub_id=251104
dc.rightsArchived with thanks to Combustion Science and Technology
dc.rightsThis file is an open access version redistributed from: https://eprint.ncl.ac.uk/fulltext.aspx?url=251104/1A0B9F3D-46CF-440E-8991-E04DD0D89A7B.pdf&pub_id=251104
dc.subjectFlame surface density
dc.subjectreynolds averaged navier stokes simulations
dc.subjectreaction progress variable
dc.subjectreaction rate closure
dc.subjectdirect numerical simulations
dc.titleEffects of Reaction Progress Variable Definition on the Flame Surface Density Transport Statistics and Closure for Different Combustion Regimes
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentComputational Reacting Flow Laboratory (CRFL)
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalCombustion Science and Technology
dc.rights.embargodate2019-10-04
dc.eprint.versionPost-print
dc.contributor.institutionSchool of Engineering, Newcastle University, Newcastle, UK
dc.contributor.institutionFakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr München, Neubiberg, Germany
kaust.personIm, Hong G.
refterms.dateFOA2020-03-23T12:23:16Z
dc.date.published-print2019


Files in this item

Thumbnail
Name:
FSD_CST_unmarked.pdf
Size:
1012.Kb
Format:
PDF
Description:
Accepted Manuscript
Thumbnail
Name:
Articlefile1.pdf
Size:
1012.Kb
Format:
PDF
Description:
Article

This item appears in the following Collection(s)

Show simple item record