Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation
dc.contributor.author | Naik, Gautam Kumar | |
dc.contributor.author | Majhi, Sanjit Manohar | |
dc.contributor.author | Jeong, Kwang-Un | |
dc.contributor.author | Lee, In-Hwan | |
dc.contributor.author | Yu, Yeon Tae | |
dc.date.accessioned | 2018-12-31T13:35:08Z | |
dc.date.available | 2018-12-31T13:35:08Z | |
dc.date.issued | 2018-08-31 | |
dc.identifier.citation | Naik GK, Majhi SM, Jeong K-U, Lee I-H, Yu YT (2019) Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation. Journal of Alloys and Compounds 771: 505–512. Available: http://dx.doi.org/10.1016/j.jallcom.2018.08.277. | |
dc.identifier.issn | 0925-8388 | |
dc.identifier.doi | 10.1016/j.jallcom.2018.08.277 | |
dc.identifier.uri | http://hdl.handle.net/10754/630532 | |
dc.description.abstract | The current study concerns about the large band gap of TiO for its use as photocatalysts. The photocatalytic activity of core-shell structured Au@TiO nanoparticles were enhanced by the doping of nitrogen. The nitrogen doping has been done by simple hydrothermal method taking ethylenediamine as the precursor for nitrogen. The crystals structure of TiO shell remained unaltered even with the introduction of nitrogen. The photocatalytic activity of the prepared samples were evaluated towards the hydrogen evolution from photocatalytic water splitting under solar light irradiation. It was found that nitrogen doped core-shell structured Au@TiO nanoparticles (Au@N-TiO) showed higher photocatalytic activity with an average H evolution rate of 4880 μmol hg, which is 3.79 times more than that of bare TiO in 4 h under xenon light irradiation. The relationship among the other samples was in order of Au@N-TiO > Au@TiO > N-TiO > TiO. This enhanced photocatalytic activity of Au@N-TiO can be responsible for the formation of an plasmonic photocatalyst and the formation of an impurity band between the conduction band (CB) and the valence band (VB) of TiO. | |
dc.description.sponsorship | This work was supported by 1) BK21 plus program from the Ministry of Education and Human-Resource Development, 2) National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (BRL No. 2015042417, 2016R1A2B4014090) and 3) “Research Base Construction Fund Support Program” funded by Chonbuk National University in 2017. | |
dc.publisher | Elsevier BV | |
dc.relation.url | http://www.sciencedirect.com/science/article/pii/S092583881833175X | |
dc.subject | Core-shell | |
dc.subject | Hydrogen evolution | |
dc.subject | Nitrogen doped | |
dc.subject | TiO2 | |
dc.subject | Water splitting | |
dc.title | Nitrogen doping on the core-shell structured Au@TiO2 nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation | |
dc.type | Article | |
dc.contributor.department | Advanced Membranes and Porous Materials Research Center | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.identifier.journal | Journal of Alloys and Compounds | |
dc.contributor.institution | Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University, Jeonju, 54899, , South Korea | |
dc.contributor.institution | Polymer Materials Fusion Research Center & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, 54896, , South Korea | |
dc.contributor.institution | Department of Materials Science and Engineering, Korea University, Seoul, 02841, , South Korea | |
kaust.person | Majhi, Sanjit Manohar | |
dc.date.published-online | 2018-08-31 | |
dc.date.published-print | 2019-01 |