Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis

Abstract
In tandem catalysis, two distinct catalytic materials are interfaced to feed the product of one reaction into the next one. This approach, analogous to enzyme cascades, can potentially be used to upgrade small molecules such as CO2 to more valuable hydrocarbons. Here, we investigate the materials chemistry of metal-organic framework (MOF) thin films grown on gold nanostructured microelectrodes (AuNMEs), focusing on the key materials chemistry challenges necessary to enable the applications of these MOF/AuNME composites in tandem catalysis. We applied two growth methods-layer-by-layer and solvothermal-to grow a variety of MOF thin films on AuNMEs and then characterized them using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The MOF@AuNME materials were then evaluated for electrocatalytic CO2 reduction. The morphology and crystallinity of the MOF thin films were examined, and it was found that MOF thin films were capable of dramatically suppressing CO production on AuNMEs and producing further-reduced carbon products such as CH4 and C2H4. This work illustrates the use of MOF thin films to tune the activity of an underlying CO2RR catalyst to produce further-reduced products.

Citation
De Luna P, Liang W, Mallick A, Shekhah O, García de Arquer FP, et al. (2018) Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces 10: 31225–31232. Available: http://dx.doi.org/10.1021/acsami.8b04848.

Acknowledgements
This publication is based in part on work supported by the Center Partnership Funds Program, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. P.D.L. wishes to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for support in the form of the Canadian Graduate Scholarship—Doctoral award.

Publisher
American Chemical Society (ACS)

Journal
ACS Applied Materials & Interfaces

DOI
10.1021/acsami.8b04848

Additional Links
https://pubs.acs.org/doi/10.1021/acsami.8b04848

Permanent link to this record