Show simple item record

dc.contributor.authorXia, Chuan
dc.contributor.authorLin, Zifeng
dc.contributor.authorZhou, Yungang
dc.contributor.authorZhao, Chao
dc.contributor.authorLiang, Hanfeng
dc.contributor.authorRozier, Patrick
dc.contributor.authorWang, Zhiguo
dc.contributor.authorAlshareef, Husam N.
dc.date.accessioned2018-12-31T13:30:49Z
dc.date.available2018-12-31T13:30:49Z
dc.date.issued2018-08-30
dc.identifier.citationXia C, Lin Z, Zhou Y, Zhao C, Liang H, et al. (2018) Large Intercalation Pseudocapacitance in 2D VO2 (B): Breaking through the Kinetic Barrier. Advanced Materials 30: 1803594. Available: http://dx.doi.org/10.1002/adma.201803594.
dc.identifier.issn0935-9648
dc.identifier.doi10.1002/adma.201803594
dc.identifier.urihttp://hdl.handle.net/10754/630515
dc.description.abstractVO2 (B) features two lithiation/delithiation processes, one of which is kinetically facile and has been commonly observed at 2.5 V versus Li/Li+ in various VO2 (B) structures. In contrast, the other process, which occurs at 2.1 V versus Li/Li+ , has only been observed at elevated temperatures due to large interaction energy barrier and extremely sluggish kinetics. Here, it is demonstrated that a rational design of atomically thin, 2D nanostructures of VO2 (B) greatly lowers the interaction energy and Li+ -diffusion barrier. Consequently, the kinetically sluggish step is successfully enabled to proceed at room temperature for the first time ever. The atomically thin 2D VO2 (B) exhibits fast charge storage kinetics and enables fully reversible uptake and removal of Li ions from VO2 (B) lattice without a phase change, resulting in exceptionally high performance. This work presents an effective strategy to speed up intrinsically sluggish processes in non-van der Waals layered materials.
dc.description.sponsorshipC.X., Z.L., and Y.Z. contributed equally to this work. Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). C.X. acknowledges support from Fan Zhang and Jing Guo at KAUST. The authors like to also thank Professor Bruce Dunn, UCLA, and Professor Patrice Simon, Université Paul Sabatier, for useful discussions.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/adma.201803594
dc.rightsArchived with thanks to Wiley
dc.subjectIntercalation
dc.subject2d
dc.subjectPseudocapacitance
dc.subjectKinetic Barrier
dc.subjectUltrathin
dc.titleLarge Intercalation Pseudocapacitance in 2D VO2 (B): Breaking through the Kinetic Barrier
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Characterization
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Materials
dc.rights.embargodate2019-08-30
dc.eprint.versionPost-print
dc.contributor.institutionRéseau sur le Stockage Electrochimique de l'Energie (RS2E); FR CNRS 3459 France
dc.contributor.institutionCIRIMAT UMR CNRS 5085; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse France
dc.contributor.institutionSchool of Physical Electronics; University of Electronic Science and Technology of China; Chengdu 610054 P. R. China
kaust.personXia, Chuan
kaust.personZhao, Chao
kaust.personLiang, Hanfeng
kaust.personAlshareef, Husam N.
refterms.dateFOA2020-01-23T10:27:31Z
dc.date.published-online2018-08-30
dc.date.published-print2018-10


Files in this item

Thumbnail
Name:
Xia_246661.pdf
Size:
2.350Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record