Excitation Wavelength Dependent Internal Quantum Efficiencies in a P3HT / Non-Fullerene Acceptor Solar Cell
Type
ArticleAuthors
Tan, Ching-HongWadsworth, Andrew
Gasparini, Nicola
Wheeler, Scot
Holliday, Sarah
Ashraf, Raja Shahid
Dimitrov, Stoichko D.
Baran, Derya

McCulloch, Iain

Durrant, James R.
KAUST Department
Chemical Science ProgramKAUST Solar Center (KSC)
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
OSR-2015-CRG-2572Date
2018-12-24Permanent link to this record
http://hdl.handle.net/10754/630366
Metadata
Show full item recordAbstract
Solar cells based on blends of the donor polymer, P3HT, with the non-fullerene acceptor, IDTBR, have been shown to exhibit promising efficiencies and stabilities for low cost organic photovoltaic (OPV) devices. We focus herein on the charge separation and recombination dynamics in such devices. By employing selective wavelength excitations of P3HT and O-IDTBR, we show that photoexcitation of the P3HT results in lower internal quantum efficiency (IQE) for photocurrent generation than observed for photoexcitation of the O-IDTBR. Transient absorption and photoluminescence quenching studies indicate that this lower IQE results primarily from higher geminate recombination losses of photogenerated charges following P3HT excitation compared with O-IDTBR excitation, rather than from differences in exciton separation efficiency. These higher geminate recombination losses result not only in a lower photocurrent generation efficiency at short circuit, but also a lower device J-V fill factor upon selective excitation of the P3HT donor, when compared with O-IDTBR excitation.Citation
Tan C-H, Wadsworth A, Gasparini N, Wheeler S, Holliday S, et al. (2018) Excitation Wavelength Dependent Internal Quantum Efficiencies in a P3HT / Non-Fullerene Acceptor Solar Cell. The Journal of Physical Chemistry C. Available: http://dx.doi.org/10.1021/acs.jpcc.8b10918.Sponsors
The authors declare no competing financial interests. The author CH Tan thanks Malaysian Government MyBrainSc for the funding and also Matthew Davies from Swansea University for providing PL excitation spectroscopy instrument. Funding from the KAUST project OSR-2015-CRG-2572 is gratefully acknowledged. The authors also thank KAUST for financial support and acknowledge EC FP7 Project SC2 (610115), EC H2020 (643791), and EPSRC Projects EP/G037515/1 and EP/M005143/1.Publisher
American Chemical Society (ACS)Additional Links
https://pubs.acs.org/doi/10.1021/acs.jpcc.8b10918ae974a485f413a2113503eed53cd6c53
10.1021/acs.jpcc.8b10918