Show simple item record

dc.contributor.authorCelik, Abdulkadir
dc.contributor.authorAlGhadhban, Amer
dc.contributor.authorShihada, Basem
dc.contributor.authorAlouini, Mohamed-Slim
dc.date.accessioned2018-12-03T13:52:20Z
dc.date.available2018-12-03T13:52:20Z
dc.date.issued2018-12-03
dc.identifier.urihttp://hdl.handle.net/10754/630129
dc.description.abstractTraditional wired data center networks (DCNs) suffer from cabling complexity, lack flexibility, and are limited by the speed of digital switches. In this paper, we alternatively develop a top-down traffic grooming (TG) approach to the design and provisioning of mission-critical optical wireless DCNs. While switches are modeled as hybrid optoelectronic cross-connects, links are modeled as wavelength division multiplexing (WDM) capable free-space optic (FSO) channels. Using the standard TG terminology, we formulate the optimal mixed-integer TG problem considering the virtual topology, flow conversation, connection topology, non-bifurcation, and capacity constraints. Thereafter, we develop a fast yet efficient sub-optimal solution which grooms mice flows (MFs) and mission-critical flows (CFs) and forward on predetermined rack-to-rack (R2R) lightpaths. On the other hand, elephant flows (EFs) are forwarded over dedicated server- to-server (S2S) express lightpaths whose routes and capacity are dynamically determined based on the availability of wavelength and capacity. To prioritize the CFs, we consider low and high priority queues and analyze the delay characteristics such as waiting times, maximum hop counts, and blocking probability. As a result of grooming the sub-wavelength traffic and adjusting the wavelength capacities, numerical results show that the proposed solutions can achieve significant performance enhancement by utilizing the bandwidth more efficiently, completing the flows faster than delay sensitivity requirements, and avoiding the traffic congestion by treating EFs and MFs separately.en_US
dc.language.isoenen
dc.publisherIEEEen_US
dc.titleDesign and Provision of Traffic Grooming for Optical Wireless Data Center Networksen_US
dc.typeArticleen
dc.contributor.departmentCEMSEen_US
dc.identifier.journalIEEE TRANSACTIONS ON COMMUNICATIONSen_US
dc.eprint.versionPost-printen_US
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)en
refterms.dateFOA2018-12-03T13:52:21Z


Files in this item

Thumbnail
Name:
Final.pdf
Size:
4.912Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record