• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Seismic Modeling and Imaging Using Duplex-Wave and Low-rank Approximation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dissertation_Ghada.pdf
    Size:
    6.105Mb
    Format:
    PDF
    Description:
    Thesis
    Download
    Type
    Dissertation
    Authors
    Sindi, Ghada Atef cc
    Advisors
    Alkhalifah, Tariq Ali cc
    Committee members
    Peter, Daniel cc
    Hoteit, Ibrahim cc
    Laleg-Kirati, Taous-Meriem cc
    Al-Shuhail, Abdullatif
    Program
    Earth Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2018-11
    Embargo End Date
    2019-12-03
    Permanent link to this record
    http://hdl.handle.net/10754/630112
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2019-12-03.
    Abstract
    A foremost aim of exploration is to distinguish locations of reservoirs to drill new wells. Increasingly, the resolution of subsurface images leads to the identification of geological properties and improved knowledge of the Earth’s subsurface. Subsequently, in seismic exploration, approaches to solving wave equations include finite-difference and pseudo-spectral algorithms. However, these approximations can cause numerical instability and dispersion artifacts. Accordingly, the sampling intervals in time or space require a rigorous limit. This thesis is divided into two parts. The first part focuses on wavefield extrapolation methods. I proposed a method that is theoretically exempt from numerical instability and dispersion artifacts for seismic imaging. The new approach is established with a fast implementation of a Fourier Integral Operator (FIO) obtained from the solutions of the wave equations. I show that the new algorithm is stable and able to propagate waves using large time-step sizes. However, it comes with an additional cost to the extrapolation. Next, I present a new spectral method of using a residual formulation that employs a second-order Taylors series expansion to lower the cost and promote accuracy. The new residual application depends on the velocity perturbation. The second part of the thesis is devoted to a new modified method for imaging the Earth based on a variation on Reverse Time Migration (RTM). The core of seismic imaging algorithms like RTM depends on the wavefield time extrapolation. I have developed a new depth migration technique, Duplex-Wave Reverse Time Migration (DRTM), to improve the image considering the complexity of near-surface structures. DRTM utilizes the direct arrival as a source to propagate a forward wavefield and then reversely extrapolates the recorded data and finally applies the zero-lag crosscorrelation imaging condition. The new algorithm can be used to improve the current RTM method for imaging the shallow areas, without additional computational costs. I have studied the reconstruction of missing near-surface offset seismic data. By applying seismic interferomerty to retrieve the missing near-offset recorded data, we can resolve the issue of getting a poor image using the DRTM algorithm. This will in turn enhance the image in areas with complex near-surface structures and get a better image compared to the image produced with the missing near-offset recorded data.
    Citation
    Sindi, G. A. (2018). Seismic Modeling and Imaging Using Duplex-Wave and Low-rank Approximation. KAUST Research Repository. https://doi.org/10.25781/KAUST-2MS96
    DOI
    10.25781/KAUST-2MS96
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-2MS96
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.