Show simple item record

dc.contributor.advisorYounis, Mohammad I.
dc.contributor.authorJaber, Nizar
dc.date.accessioned2018-11-28T12:31:42Z
dc.date.available2019-11-28T00:00:00Z
dc.date.issued2018-11
dc.identifier.citationJaber, N. (2018). Dynamic Approaches to Improve Sensitivity and Performance of Resonant MEMS Sensors. KAUST Research Repository. https://doi.org/10.25781/KAUST-0596D
dc.identifier.doi10.25781/KAUST-0596D
dc.identifier.urihttp://hdl.handle.net/10754/630094
dc.description.abstractThe objective of this dissertation is to investigate several dynamical approaches aiming to improve the sensitivity and performance of microelectromechanical systems (MEMS) resonant sensors. Resonant sensors rely on tracking shifts in the dynamic features of microstructures during sensing, such as their resonance frequency. We aim here to demonstrate analytically and experimentally several new concepts aiming to sharpen their response, enhance the signal to noise ratio, and demonstrate smart functionalities combined into a single resonator. The dissertation starts with enhancing the excitations of the higher order modes of vibrations of clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. Using a half electrode, the second mode is excited with a high amplitude of vibration. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. Then, we demonstrate the effectiveness of higher order mode excitation and metal organic frameworks (MOFs) functionalization for improving the sensitivity and selectivity of resonant gas sensors. Also, using a single mode only, we show the possibility of realizing a smart switch triggered upon exceeding a threshold mass when operating the resonator near the dynamic pull-in instability. The second part of the dissertation deals with the dynamics of the microbeam under a two-source harmonic excitation. We experimentally demonstrate resonances of an additive and subtractive type. It is shown that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. Finally, we employ the multimode excitation of a single resonator to demonstrate smart functionalities. By monitoring the frequency shifts of two modes, we experimentally demonstrate the effectiveness of this technique to measure the environmental temperature and gas concentration. Also, we present a hybrid sensor and switch device, which is capable of accurately measuring gas concentration and perform switching when the concentration exceeds a specific (safe) threshold. In contrast to the single mode operation, we show that monitoring the third mode enhances sensitivity, improves accuracy, and lowers the sensor sensitivity to noise.
dc.language.isoen
dc.subjectMEMS
dc.subjectResonator
dc.subjectNonlinear dynamics
dc.subjectBifurcation
dc.subjectSmart sensor
dc.subjectGas sensor
dc.titleDynamic Approaches to Improve Sensitivity and Performance of Resonant MEMS Sensors
dc.typeDissertation
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.rights.embargodate2019-11-28
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberFarooq, Aamir
dc.contributor.committeememberLaleg-Kirati, Taous-Meriem
dc.contributor.committeememberRhoads, Jeffery
thesis.degree.disciplineMechanical Engineering
thesis.degree.nameDoctor of Philosophy
dc.rights.accessrightsAt the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2019-11-28.
refterms.dateFOA2019-11-28T00:00:00Z


Files in this item

Thumbnail
Name:
NizarJaberThesis.docxNov2018.pdf
Size:
6.896Mb
Format:
PDF
Description:
Dissertation _ Nizar Jaber

This item appears in the following Collection(s)

Show simple item record