• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Prediction of Active and Inactive Chemical Compounds from High-Throughput Assays

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis_final_submision.pdf
    Size:
    2.895Mb
    Format:
    PDF
    Download
    Type
    Thesis
    Authors
    Islam, Elaf J. cc
    Advisors
    Bajic, Vladimir B. cc
    Committee members
    Laleg-Kirati, Taous-Meriem cc
    Moshkov, Mikhail cc
    Program
    Computer Science
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2018-11-28
    Permanent link to this record
    http://hdl.handle.net/10754/630092
    
    Metadata
    Show full item record
    Abstract
    This study considers chemical compounds that can exert their activity by interacting with a target protein or other molecular receptors. Our aim is to develop machine learning models that can predict if a chemical compound will be active in a particular test/assay. We will use data from assays that are present in the PubChem knowledgebase, specifically in its segment called BioAssays which reports the results of many high-throughput screening experiments. PubChem BioAssays is a valuable resource that contains information from a large number of experiments. In one assay, sometimes many hundreds or even many thousands of chemicals are tested. Data from these experimental assays contain information about chemicals that are active as well as chemicals that are not active in the assay. These represent an interesting resource of experimental data that are well suited for classification purposes. We will approach the problem by evaluating different ways that chemical compounds can be numerically described by means of so-called fingerprints, and then apply different machine learning (ML) and deep learning (DL) models to classify active and inactive chemicals for a number of assays. In this study, we will make comprehensive comparisons of the types of ML/DL models and types of fingerprint features that describe chemicals, and evaluate combinations of models and fingerprints that work best for the problem in question. Our focus is on finding those combinations which are useful for distinguishing active from inactive compounds in single PubChem assays. We will evaluate the methods across 10 assays and will examine the effects of 11 types of fingerprints. For example, PubChem fingerprints and MACCS keys fingerprints. For the evaluation, up to now we performed 88 experiments for each dataset and 968 in total for all 10 PubChem assays. These experiments involved approximately 6,000 interactions between chemicals and their targets. The implementation of this project has been done using MATLAB. Based on these and additional experiments, we will be in a position to propose which combination of fingerprints and ML/DL models works best in the above mentioned task. Such modeling will be useful to predict activity for chemicals that are not yet tested.
    Citation
    Islam, E. J. (2018). Prediction of Active and Inactive Chemical Compounds from High-Throughput Assays. KAUST Research Repository. https://doi.org/10.25781/KAUST-4Y962
    DOI
    10.25781/KAUST-4Y962
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-4Y962
    Scopus Count
    Collections
    Theses; Computer Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.