Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionApplied Mathematics and Computational Science Program
KAUST Grant Number
OSR-2016-CRG5-2950BAS/1/1626-01-01
Date
2018-10-17Online Publication Date
2018-10-17Print Publication Date
2018-12Permanent link to this record
http://hdl.handle.net/10754/630078
Metadata
Show full item recordAbstract
Acoustic metasurfaces derive their characteristics from the interaction between acoustic waves and specifically designed materials. The field is driven by the desire to control acoustic wave propagation using compact devices and is governed by fundamental and physical principles that provide the design rules and the functionality of a wave. Acoustic metasurfaces have added value and unusual functionalities compared with their predecessor in materials science, namely, acoustic metamaterials. These rationally designed 2D materials of subwavelength thickness provide a new route for sound wave manipulation. In this Review, we delineate the fundamental physics of metasurfaces, describe their different concepts and design strategies, and discuss their functionalities for controllable reflection, transmission and extraordinary absorption. In particular, we outline the main designs of acoustic metasurfaces, including those based on coiling-up space, Helmholtz-resonator-like and membrane-type structures, and discuss their applications, such as beam focusing, asymmetrical transmission and self-bending beams. We conclude with an outlook of the future directions in this emerging field.Citation
Assouar B, Liang B, Wu Y, Li Y, Cheng J-C, et al. (2018) Acoustic metasurfaces. Nature Reviews Materials. Available: http://dx.doi.org/10.1038/s41578-018-0061-4.Sponsors
B.A. acknowledges support from the Institut Carnot ICEEL and from la Région Grand Est. B.L., J.-C.C. and Y.L. acknowledge support from the National Natural Science Foundation of China (Grants No. 11634006 and No. 11704284). Y.W. acknowledges partial support from the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2950 and KAUST Baseline Research Fund BAS/1/1626-01-01.Publisher
Springer NatureJournal
Nature Reviews MaterialsAdditional Links
https://www.nature.com/articles/s41578-018-0061-4ae974a485f413a2113503eed53cd6c53
10.1038/s41578-018-0061-4