Show simple item record

dc.contributor.authorNaji, Osamah
dc.contributor.authorBowtell, Les
dc.contributor.authorAl-juboori, Raed A
dc.contributor.authorAravinthan, Vasantha
dc.contributor.authorGhaffour, NorEddine
dc.date.accessioned2018-11-21T13:15:41Z
dc.date.available2018-11-21T13:15:41Z
dc.date.issued2018
dc.identifier.citationNaji O, Bowtell L, Al-juboori Raed A , Aravinthan V, Ghaffour N (2018) Effect of air gap membrane distillation parameters on the removal of fluoride from synthetic water. DESALINATION AND WATER TREATMENT 124: 11–20. Available: http://dx.doi.org/10.5004/dwt.2018.22694.
dc.identifier.doi10.5004/dwt.2018.22694
dc.identifier.urihttp://hdl.handle.net/10754/629967
dc.description.abstractAs freshly available water around the world becomes scarcer, schemes to reuse and rectify contaminated water sources are becoming a necessity. The implementation of conventional treatment processes increases stress on existing infrastructure resources, requiring significant quantities of energy and/or chemicals, including pre-treatment processes and ongoing maintenance. An unconventional alternative to these processes is air-gap membrane distillation (AGMD), an emerging technology delivering excellent rejection of contaminants over a broad range of operating conditions. While showing great promise, the size of membrane distillation systems in existing literature is not readily scaled to industrial levels. In this paper, we present the results of our research in terms of permeate quality, rejection efficiency and scalability of a large laboratory scale AGMD system, with effective area of approximately 25 times larger than those presented in previous studies. This study found a large discrepancy in flux production when compared with small scale results, with experimental data analysed using normality and residual analysis tests. Statistical analysis of the AGMD process data provides insight into the key driving forces and interactions of feedwater temperature, concentration and flowrate on flux production. Results showed excellent rejection of contaminants (>98%) along with some fouling evident after approximately 25 h of operation.
dc.description.sponsorshipThe research reported in this paper was supported by University of Southern Queensland, and Ministry of Higher Education and Scientific Research (Iraq). We would also like to thank our industry partners for their help and assistance. In particular, we would like to acknowledge the technical support of the Scarab Co. staff and provision of membranes from Donaldson filtration.
dc.publisherDesalination Publications
dc.relation.urlhttp://www.deswater.com/DWT_articles/vol_124_papers/124_2018_11.pdf
dc.rightsArchived with thanks to DESALINATION AND WATER TREATMENT
dc.subjectAgmd
dc.subjectDecontamination
dc.subjectDesalination
dc.subjectFluoride removal
dc.subjectFouling
dc.titleEffect of air gap membrane distillation parameters on the removal of fluoride from synthetic water
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalDESALINATION AND WATER TREATMENT
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionFaculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD, 4350, , Australia
kaust.personGhaffour, Noreddine
refterms.dateFOA2018-11-22T07:05:52Z


Files in this item

Thumbnail
Name:
124_2018_11.pdf
Size:
584.5Kb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record