Monitoring robotic swarm systems under noisy conditions using an effective fault detection strategy
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
KAUST Grant Number
OSR-2015-CRG4-2582Date
2018-10-22Online Publication Date
2018-10-22Print Publication Date
2019-02-01Permanent link to this record
http://hdl.handle.net/10754/629958
Metadata
Show full item recordAbstract
Fault detection in robotic swarm systems is imperative to guarantee their reliability, safety, and to maximize operating efficiency and avoid expensive maintenance. However, data from these systems are generally contaminated with noise, which masks important features in the data and degrades the fault detection capability. This paper introduces an effective fault detection approach against noise and uncertainties in data, which integrates the multiresolution representation of data using wavelets with the sensitivity to small changes of an exponentially weighted moving average scheme. Specifically, to monitor swarm robotics systems performing a virtual viscoelastic control model for circle formation task, the proposed scheme has been applied to the uncorrelated residuals form principal component analysis model. A simulated data from ARGoS simulator is used to evaluate the effectiveness of the proposed method. Also, we compared the performance of the proposed approach to that of the conventional principal component-based approach and found improved sensitivity to faults and robustness to noises. For all the fault types tested–abrupt faults, random walks, and complete stop faults–our approach resulted in a significant enhancement in fault detection compared with the conventional approach.Citation
Harrou F, Khaldi B, Sun Y, Cherif F (2018) Monitoring robotic swarm systems under noisy conditions using an effective fault detection strategy. IEEE Sensors Journal: 1–1. Available: http://dx.doi.org/10.1109/JSEN.2018.2877183.Sponsors
The work presented in this publication was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2582.Journal
IEEE Sensors JournalAdditional Links
https://ieeexplore.ieee.org/document/8501946ae974a485f413a2113503eed53cd6c53
10.1109/JSEN.2018.2877183