• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Modeling, Analysis, and Design of 5G Networks using Stochastic Geometry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis.pdf
    Size:
    1.949Mb
    Format:
    PDF
    Description:
    Final thesis
    Download
    Type
    Dissertation
    Authors
    Ali, Konpal cc
    Advisors
    Alouini, Mohamed-Slim cc
    Committee members
    Al-Naffouri, Tareq Y. cc
    Laleg-Kirati, Taous-Meriem cc
    Sari, Hikmet
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2018-11
    Permanent link to this record
    http://hdl.handle.net/10754/629860
    
    Metadata
    Show full item record
    Abstract
    Improving spectral-utilization is a core focus to cater the ever-increasing demand in data rate and system capacity required for the development of 5G. This dissertation focuses on three spectrum-reuse technologies that are envisioned to play an important role in 5G networks: device-to-device (D2D), full-duplex (FD), and nonorthogonal multiple access (NOMA). D2D allows proximal user-equipments (UEs) to bypass the cellular base-station and communicate with their intended receiver directly. In underlay D2D, the D2D UEs utilize the same spectral resources as the cellular UEs. FD communication allows a transmit-receive pair to transmit simultaneously on the same frequency channel. Due to the overwhelming self-interference encountered, FD was not possible until very recently courtesy of advances in transceiver design. NOMA allows multiple receivers (transmitters) to communicate with one transmitter (receiver) in one time-frequency resource-block by multiplexing in the power domain. Successive-interference cancellation is used for NOMA decoding. Each of these techniques significantly improves spectral efficiency and consequently data rate and throughput; however, the price paid is increased interference. Since each of these technologies allow multiple transmissions within a cell on a time-frequency resource-block, they result in interference within the cell (i.e., intracell interference). Additionally, due to the increased communication, they increase network interference from outside the cell under consideration as well (i.e., increased intercell interference). Real networks are becoming very dense; as a result, the impact of intercell interference coming from the entire network is significant. As such, using models that consider a single-cell/few-cell scenarios result in misleading conclusions. Hence, accurate modeling requires considering a large network. In this context, stochastic geometry is a powerful tool for analyzing random patterns of points such as those found in wireless networks. In this dissertation, stochastic geometry is used to model and analyze the different technologies that are to be deployed in 5G networks. This gives us insight into the network performance, showing us the impacts of deploying a certain technology into real 5G networks. Additionally, it allows us to propose schemes for integrating such technologies, mode-selection, parameter-selection, and resource-allocation that enhance the parameters of interest in the network such as data rate, coverage, and secure communication.
    DOI
    10.25781/KAUST-0761W
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-0761W
    Scopus Count
    Collections
    Dissertations; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.