• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Structural control of nonnative ligand binding in engineered mutants of phosphoenolpyruvate carboxykinase

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tang, Henry Yue Hin
    Shin, David S
    Hura, Gregory L.
    Yang, Yue
    Hu, Xiaoyu
    Lightstone, Felice C
    McGee, Matthew D
    Padgett, Hal S
    Yannone, Steven M
    Tainer, John A.
    Date
    2018-10-30
    Online Publication Date
    2018-10-30
    Print Publication Date
    2018-12-04
    Permanent link to this record
    http://hdl.handle.net/10754/629814
    
    Metadata
    Show full item record
    Abstract
    Protein engineering to alter recognition underlying ligand binding and activity has enormous potential. Here, ligand binding for E. coli phosphoenolpyruvate carboxykinase (PEPCK), which converts oxaloacetate into CO2 and phosphoenolpyruvate as the first committed step in gluconeogenesis, was engineered to accommodate alternative ligands as an exemplary system with structural information. From our identification of bicarbonate binding in the PEPCK active site at the supposed CO2 binding site, we probed binding of nonnative ligands with three oxygen atoms arranged to resemble bicarbonate geometry. Crystal structures of PEPCK and point mutants with bound nonnative ligands thiosulfate and methanesulfonate along with strained ATP plus reoriented oxaloacetate intermediates and unexpected bicarbonate were solved and analyzed. The mutations successfully altered the bound ligand position and orientation, as well as its specificity: mutated PEPCKs bound either thiosulfate or methanesulfonate, but never both. Computational calculations predicted a methanesulfonate binding mutant and revealed that release of active site ordered solvent exerts a strong influence on ligand binding. Besides nonnative ligand binding, one mutant altered the Mn2+ coordination sphere: instead of the canonical octahedral ligand arrangement, the mutant in question only had a five-coordinate arrangement. From this work, critical features of ligand binding, position, and metal ion co-factor geometry required for all downstream events can be engineered with small numbers of mutations to provide insights into fundamental underpinnings of protein-ligand recognition. Through structural and computational knowledge, the combination of designed and random mutations aids robust design of predetermined changes to ligand binding and activity in order to engineer protein function.
    Citation
    Tang HYH, Shin DS, Hura GL, Yang Y, Hu X, et al. (2018) Structural control of nonnative ligand binding in engineered mutants of phosphoenolpyruvate carboxykinase. Biochemistry. Available: http://dx.doi.org/10.1021/acs.biochem.8b00963.
    Sponsors
    This work was conducted at the Advanced Light Source (ALS), a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the Department of Energy, Office of Basic Energy Sciences, through the Integrated Diffraction Analysis Technologies (IDAT) program, supported by DOE Office of Biological and Environmental Research. Added support came from KAUST and a High-End Instrumentation Grant S10OD018483. J.A.T. is supported by NIH R35CA22043, a Robert A. Welch Chemistry Chair, and the Cancer Prevention and Research Institute of Texas.. This work was supported by a Department of Energy ARPA-E REMOTE grant. Part of the computational work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Release number: LLNL-JRNL-735122.
    Publisher
    American Chemical Society (ACS)
    Journal
    Biochemistry
    DOI
    10.1021/acs.biochem.8b00963
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.biochem.8b00963
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.