• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Peng, Jun-hui
    Wang, Wei
    Yu, Ye-qing
    Gu, Han-lin
    Huang, Xuhui
    KAUST Grant Number
    OSR-2016-CRG5-3007
    Date
    2018-09-25
    Online Publication Date
    2018-09-25
    Print Publication Date
    2018-08
    Permanent link to this record
    http://hdl.handle.net/10754/629809
    
    Metadata
    Show full item record
    Abstract
    Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure-function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timescales. MD simulations often produce massive datasets containing millions of snapshots describing proteins in motion. Therefore, clustering algorithms have been in high demand to be developed and applied to classify these MD snapshots and gain biological insights. There mainly exist two categories of clustering algorithms that aim to group protein conformations into clusters based on the similarity of their shape (geometric clustering) and kinetics (kinetic clustering). In this paper, we review a series of frequently used clustering algorithms applied in MD simulations, including divisive algorithms, agglomerative algorithms (single-linkage, complete-linkage, average-linkage, centroid-linkage and ward-linkage), center-based algorithms (K-Means, K-Medoids, K-Centers, and APM), density-based algorithms (neighbor-based, DBSCAN, density-peaks, and Robust-DB), and spectral-based algorithms (PCCA and PCCA+). In particular, differences between geometric and kinetic clustering metrics will be discussed along with the performances of different clustering algorithms. We note that there does not exist a one-size-fits-all algorithm in the classification of MD datasets. For a specific application, the right choice of clustering algorithm should be based on the purpose of clustering, and the intrinsic properties of the MD conformational ensembles. Therefore, a main focus of our review is to describe the merits and limitations of each clustering algorithm. We expect that this review would be helpful to guide researchers to choose appropriate clustering algorithms for their own MD datasets.
    Citation
    Peng J, Wang W, Yu Y, Gu H, Huang X (2018) Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems. Chinese Journal of Chemical Physics 31: 404–420. Available: http://dx.doi.org/10.1063/1674-0068/31/cjcp1806147.
    Sponsors
    This work was supported by Shenzhen Science and Technology Innovation Committee (JCYJ20170413173837121), the Hong Kong Research Grant Council (HKUST C6009-15G, 14203915, 16302214, 16304215, 16318816, and AoE/P-705/16), King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (OSR-2016-CRG5-3007), Guangzhou Science Technology and Innovation Commission (201704030116), and Innovation and Technology Commission (ITCPD/17-9 and ITC-CNERC14SC01). X. Huang is the Padma Harilela Associate Professor of Science.
    Publisher
    AIP Publishing
    Journal
    Chinese Journal of Chemical Physics
    DOI
    10.1063/1674-0068/31/cjcp1806147
    ae974a485f413a2113503eed53cd6c53
    10.1063/1674-0068/31/cjcp1806147
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.