Elastic-Beam Triboelectric Nanogenerator for High-Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard
dc.contributor.author | Chen, Yuliang | |
dc.contributor.author | Wang, Yi-Cheng | |
dc.contributor.author | Zhang, Ying | |
dc.contributor.author | Zou, Haiyang | |
dc.contributor.author | Lin, Zhiming | |
dc.contributor.author | Zhang, Guobin | |
dc.contributor.author | Zou, Chongwen | |
dc.contributor.author | Wang, Zhong Lin | |
dc.date.accessioned | 2018-11-11T09:03:19Z | |
dc.date.available | 2018-11-11T09:03:19Z | |
dc.date.issued | 2018-09-03 | |
dc.identifier.citation | Chen Y, Wang Y-C, Zhang Y, Zou H, Lin Z, et al. (2018) Elastic-Beam Triboelectric Nanogenerator for High-Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard. Advanced Energy Materials 8: 1802159. Available: http://dx.doi.org/10.1002/aenm.201802159. | |
dc.identifier.issn | 1614-6832 | |
dc.identifier.doi | 10.1002/aenm.201802159 | |
dc.identifier.uri | http://hdl.handle.net/10754/629805 | |
dc.description.abstract | Exploiting novel devices for either collecting energy or self-powered sensors is vital for Internet of Things, sensor networks, and big data. Triboelectric nanogenerators (TENGs) have been proved as an effective solution for both energy harvesting and self-powered sensing. The traditional triboelectric nanogenerators are usually based on four modes: contact-separation mode, lateral sliding mode, single-electrode mode, and freestanding triboelectric-layer mode. Since the reciprocating displacement/force is necessary for all working modes, developing efficient elastic TENG is going to be important and urgent. Here, a kind of elastic-beam TENG with arc-stainless steel foil is developed, whose structure is quite simple, and its working states depend on the contact area and separating distance as proved by experiments and theoretical calculations. This structure is different from traditional structures, e.g., direct sliding or contact-separation structures, whose working states mainly depend on contact area or separating distance. This triboelectric nanogenerator shows advanced mechanical and electrical performance, such as high sensitivity, elasticity, and ultrahigh frequency response, which encourage applications as a force sensor, sensitivity scale, acceleration sensor, vibration sensor, and intelligent keyboard. | |
dc.description.sponsorship | The authors acknowledge support from King Abdullah University of Science and Technology (KAUST), the Hightower Chair foundation, and the “thousands talents” program for pioneer researcher and his innovation team, China. Y.L.C. thanks China Scholarship Council for supplying oversea scholarship (201706340019). | |
dc.publisher | Wiley | |
dc.subject | elastic triboelectric nanogenerators | |
dc.subject | intelligent keyboards | |
dc.subject | multifunctional sensors | |
dc.subject | self-powered sensors | |
dc.title | Elastic-Beam Triboelectric Nanogenerator for High-Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard | |
dc.type | Article | |
dc.identifier.journal | Advanced Energy Materials | |
dc.contributor.institution | National Synchrotron Radiation Laboratory; University of Science and Technology of China; Hefei 230029 China | |
dc.contributor.institution | School of Materials Science and Engineering; Georgia Institute of Technology; Atlanta GA 30332-0245 USA | |
dc.contributor.institution | College of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100049 China | |
dc.contributor.institution | Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 China | |
dc.date.published-online | 2018-09-03 | |
dc.date.published-print | 2018-10 |