Show simple item record

dc.contributor.authorLiu, Zhiguang
dc.contributor.authorDu, Huifeng
dc.contributor.authorLi, Jiafang
dc.contributor.authorLu, Ling
dc.contributor.authorLi, Zhi-Yuan
dc.contributor.authorFang, Nicholas X.
dc.date.accessioned2018-11-11T08:59:47Z
dc.date.available2018-11-11T08:59:47Z
dc.date.issued2018-07-06
dc.identifier.citationLiu Z, Du H, Li J, Lu L, Li Z-Y, et al. (2018) Nano-kirigami with giant optical chirality. Science Advances 4: eaat4436. Available: http://dx.doi.org/10.1126/sciadv.aat4436.
dc.identifier.issn2375-2548
dc.identifier.doi10.1126/sciadv.aat4436
dc.identifier.urihttp://hdl.handle.net/10754/629784
dc.description.abstractKirigami enables versatile shape transformation from two-dimensional (2D) precursors to 3D architectures with simplified fabrication complexity and unconventional structural geometries. We demonstrate a one-step and on-site nano-kirigami method that avoids the prescribed multistep procedures in traditional mesoscopic kirigami or origami techniques. The nano-kirigami is readily implemented by in situ cutting and buckling a suspended gold film with programmed ion beam irradiation. By using the topography-guided stress equilibrium, rich 3D shape transformation such as buckling, rotation, and twisting of nanostructures is precisely achieved, which can be predicted by our mechanical modeling. Benefiting from the nanoscale 3D twisting features, giant optical chirality is achieved in an intuitively designed 3D pinwheel-like structure, in strong contrast to the achiral 2D precursor without nano-kirigami. The demonstrated nano-kirigami, as well as the exotic 3D nanostructures, could be adopted in broad nanofabrication platforms and could open up new possibilities for the exploration of functional micro-/nanophotonic and mechanical devices.
dc.description.sponsorshipThis work was supported by the National Key R&D Program of China under grant no. 2017YFA0303800; the National Natural Science Foundation of China under grant nos. 61475186, 61675227, and 11434017; and the visiting program of Chinese Scholarship Council under grant no. 201704910310. N.X.F. and H.D. acknowledge the financial support from Air Force Office of Scientific Research Multidisciplinary Research Program of the University Research Initiative (award FA9550-12-1-0488, “Quantum Metaphotonics and Quantum Metamaterials”) and from KAUST-MIT agreement no. 2950 (“Metamaterials by deep subwavelength non-Hermitian engineering”).
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.titleNano-kirigami with giant optical chirality
dc.typeArticle
dc.identifier.journalScience Advances
dc.contributor.institutionUniversity of Chinese Academy of Sciences, Beijing 100049, China.
dc.contributor.institutionInstitute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China.
dc.contributor.institutionDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
dc.contributor.institutionCollege of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
kaust.grant.number2950
dc.date.published-online2018-07-06
dc.date.published-print2018-07


This item appears in the following Collection(s)

Show simple item record