• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Accurate and standard thermochemistry for oxygenated hydrocarbons: A case study of ethyl levulinate

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ghosh, Manik Kumer cc
    Howard, Mícheál Séamus
    Dooley, Stephen
    Date
    2018-07-24
    Online Publication Date
    2018-07-24
    Print Publication Date
    2018-07
    Permanent link to this record
    http://hdl.handle.net/10754/629781
    
    Metadata
    Show full item record
    Abstract
    The enthalpies of formation are a critical fundamental parameter for the combustion modelling. The enthalpies of formation of the species of the high temperature combustion mechanism of the lignocellulosic biofuel, ethyl levulinate are determined by a number of methodologies. Chemical group additivity, atomization and isodesmic worked reactions are employed with total reaction energies computed from theory with the CBS-QB3, CBS-APNO, and G4MP2 methodologies. These calculations reveal that significant differences as high as 6.2 kcal/mol can be found between each method for the large oxygenated hydrocarbons that were tested. It is found that there is a lack of standard reference enthalpies of formation for liquid-fuel size oxygenated hydrocarbons for both molecules and radicals. In their absence, a benchmarking of the computational methodologies employed in this study to values available in the Active Thermochemical Tables for smaller oxygenated species is performed. The results show that the atomization methods performed at each separate theoretical method show mean absolute deviations against the benchmarking data set of between 0.4–0.7 kcal/mol for radicals, and 0.6–1.9 kcal/mol for molecules. By combining the data obtained with each individual method by unweighted averaging, mean absolute deviations of 0.3 and 0.5 kcal/mol for radicals and molecules can respectively result. However, the computed enthalpies of formation via the atomization procedure of larger species, of the ethyl levulinate system show variations of between 4.3–6.2 kcal/mol for molecules and 0.9–3.4 kcal/mol for radicals. As the values generated by the isodesmic reaction procedure show lower variations of 0.5–0.8 kcal/mol for radicals and 2.3–3.8 kcal/mol for molecules. Consequently, in the absence of more appropriate reference data to benchmark computational methodologies, this study recommends the use of isodesmic reactions executed at multiple theoretical methods for the determination of enthalpies of formation.
    Citation
    Ghosh MK, Howard MS, Dooley S (2018) Accurate and standard thermochemistry for oxygenated hydrocarbons: A case study of ethyl levulinate. Proceedings of the Combustion Institute. Available: http://dx.doi.org/10.1016/j.proci.2018.07.028.
    Sponsors
    This works was supported by the Future Fuels project supported by the Competitive Center Funding (CCF) program at King Abdullah University of Science and Technology (KAUST), Science Foundation Ireland and the Irish Centre for High-End Computing (ICHEC). We thank Dr. Branko Rusic for his assistance in reviewing the Active Thermochemical Tables.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2018.07.028
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2018.07.028
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.