• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    From Continuous to Discontinuous Transitions in Social Diffusion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tuzón, Paula
    Fernández-Gracia, Juan
    Eguíluz, Víctor M.
    Date
    2018-03-07
    Permanent link to this record
    http://hdl.handle.net/10754/629758
    
    Metadata
    Show full item record
    Abstract
    Models of social diffusion reflect processes of how new products, ideas, or behaviors are adopted in a population. These models typically lead to a continuous or a discontinuous phase transition of the number of adopters as a function of a control parameter. We explore a simple model of social adoption where the agents can be in two states, either adopters or non-adopters, and can switch between these two states interacting with other agents through a network. The probability of an agent to switch from non-adopter to adopter depends on the number of adopters in her network neighborhood, the adoption threshold T and the adoption coefficient a, two parameters defining a Hill function. In contrast, the transition from adopter to non-adopter is spontaneous at a certain rate μ. In a mean-field approach, we derive the governing ordinary differential equations and show that the nature of the transition between the global non-adoption and global adoption regimes depends mostly on the balance between the probability to adopt with one and two adopters. The transition changes from continuous, via a transcritical bifurcation, to discontinuous, via a combination of a saddle-node and a transcritical bifurcation, through a supercritical pitchfork bifurcation. We characterize the full parameter space. Finally, we compare our analytical results with Monte Carlo simulations on annealed and quenched degree regular networks, showing a better agreement for the annealed case. Our results show how a simple model is able to capture two seemingly very different types of transitions, i.e., continuous and discontinuous and thus unifies underlying dynamics for different systems. Furthermore, the form of the adoption probability used here is based on empirical measurements.
    Citation
    Tuzón P, Fernández-Gracia J, Eguíluz VM (2018) From Continuous to Discontinuous Transitions in Social Diffusion. Frontiers in Physics 6. Available: http://dx.doi.org/10.3389/fphy.2018.00021.
    Sponsors
    JF-G and VE received funding from Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through project SPASIMM [FIS2016-80067-P (AEI/FEDER, UE)]. Research reported in this publication was supported by research funding from King Abdullah University of Science and Technology (KAUST).
    Publisher
    Frontiers Media SA
    Journal
    Frontiers in Physics
    DOI
    10.3389/fphy.2018.00021
    ae974a485f413a2113503eed53cd6c53
    10.3389/fphy.2018.00021
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.