• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Sparse sensing for composite matched subspace detection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Coutino, Mario
    Chepuri, Sundeep Prabhakar
    Leus, Geert
    KAUST Grant Number
    OSR-2015-Sensors-2700
    Date
    2018-03-12
    Online Publication Date
    2018-03-12
    Print Publication Date
    2017-12
    Permanent link to this record
    http://hdl.handle.net/10754/629754
    
    Metadata
    Show full item record
    Abstract
    In this paper, we propose sensor selection strategies, based on convex and greedy approaches, for designing sparse samplers for composite detection. Particularly, we focus our attention on sparse samplers for matched subspace detectors. Differently from previous works, that mostly rely on random matrices to perform compression of the sub-spaces, we show how deterministic samplers can be designed under a Neyman-Pearson-like setting when the generalized likelihood ratio test is used. For a less stringent case than the worst case design, we introduce a submodular cost that obtains comparable results with its convex counterpart, while having a linear time heuristic for its near optimal maximization.
    Citation
    Coutino M, Chepuri SP, Leus G (2017) Sparse sensing for composite matched subspace detection. 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Available: http://dx.doi.org/10.1109/camsap.2017.8313125.
    Sponsors
    This research is supported in part by the ASPIRE project (project 14926 within the STWOTP programme), financed by the Netherlands Organization for Scientific Research (NWO), and the KAUST-MIT-TUD consortium under grant OSR-2015-Sensors-2700. Mario Coutino is partially supported by CONACYT.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
    DOI
    10.1109/camsap.2017.8313125
    ae974a485f413a2113503eed53cd6c53
    10.1109/camsap.2017.8313125
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.