• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fast ion transport at solid–solid interfaces in hybrid battery anodes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tu, Zhengyuan
    Choudhury, Snehashis
    Zachman, Michael J. cc
    Wei, Shuya cc
    Zhang, Kaihang
    Kourkoutis, Lena F.
    Archer, Lynden A.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2018-03-05
    Online Publication Date
    2018-03-05
    Print Publication Date
    2018-04
    Permanent link to this record
    http://hdl.handle.net/10754/629748
    
    Metadata
    Show full item record
    Abstract
    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn–Li anodes are shown to be stable at 3 mA cm−2 and 3 mAh cm−2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn–Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.
    Citation
    Tu Z, Choudhury S, Zachman MJ, Wei S, Zhang K, et al. (2018) Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nature Energy 3: 310–316. Available: http://dx.doi.org/10.1038/s41560-018-0096-1.
    Sponsors
    This work was supported by the Department of Energy (DOE), Advanced Research Projects Agency - Energy (ARPA-E) through award no. DE-AR0000750. M.J.Z. and L.F.K. acknowledge support by the NSF (DMR-1654596). The work made use of electrochemical characterization facilities in the KAUST-CU Centre for Energy and Sustainability, supported by the King Abdullah University of Science and Technology (KAUST) through award no. KUS-C1-018-02. Electron microscopy facilities at the Cornell Centre for Materials Research (CCMR), an NSF-supported MRSEC through Grant DMR-1120296, were also used for the study. Additional support for the FIB/SEM cryo-stage and transfer system was provided by the Kavli Institute at Cornell and the Energy Materials Centre at Cornell, DOE EFRC BES (DE-SC0001086). Z.T. thanks B. Polzin for kindly providing NCA cathode materials from the Cell Analysis, Modeling, and Prototyping (CAMP) Facility at Argonne National Laboratories.
    Publisher
    Springer Nature
    Journal
    Nature Energy
    DOI
    10.1038/s41560-018-0096-1
    ae974a485f413a2113503eed53cd6c53
    10.1038/s41560-018-0096-1
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.