• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Confocal non-line-of-sight imaging based on the light-cone transform

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    O’Toole, Matthew
    Lindell, David B.
    Wetzstein, Gordon
    Date
    2018-03-05
    Permanent link to this record
    http://hdl.handle.net/10754/629747
    
    Metadata
    Show full item record
    Abstract
    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector14,15,16,17,18,19. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections21,22,23,24, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.
    Citation
    O’Toole M, Lindell DB, Wetzstein G (2018) Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555: 338–341. Available: http://dx.doi.org/10.1038/nature25489.
    Sponsors
    We thank K. Zang for his expertise and advice on the SPAD sensor. We also thank B. A. Wandell, J. Chang, I. Kauvar, N. Padmanaban for reviewing the manuscript. M.O’T. is supported by the Government of Canada through the Banting Postdoctoral Fellowships programme. D.B.L. is supported by a Stanford Graduate Fellowship in Science and Engineering. G.W. is supported by a National Science Foundation CAREER award (IIS 1553333), a Terman Faculty Fellowship and by the KAUST Office of Sponsored Research through the Visual Computing Center CCF grant.
    Publisher
    Springer Nature
    Journal
    Nature
    DOI
    10.1038/nature25489
    ae974a485f413a2113503eed53cd6c53
    10.1038/nature25489
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.