• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Repeated Roll-to-Roll Transfer of Two-Dimensional Materials by Electrochemical Delamination

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hempel, Marek
    Lu, Ang-Yu
    Hui, Fei
    Kpulun, Tewa
    Lanza, Mario cc
    Harris, Gary
    Palacios, Tomas
    Kong, Jing
    KAUST Grant Number
    OSR-2015-CRG4-2634
    Date
    2018
    Permanent link to this record
    http://hdl.handle.net/10754/629745
    
    Metadata
    Show full item record
    Abstract
    Two-dimensional (2D) materials such as graphene (Gr), molybdenum disulfide and hexagonal boron nitride (hBN) hold great promise for low-cost and ubiquitous electronics for flexible displays, solar cells or smart sensors. To implement this vision, scalable production, transfer and patterning technologies of 2D materials are needed. Recently, roll-to-roll (R2R) processing, a technique that is widely used in industry and known to be cost-effective and scalable, was applied to continuously grow and transfer graphene. However, more work is needed to understand the possibilities and limitations of this technology to make R2R processing of 2D materials feasible. In this work, we fabricated a custom R2R transferring system that allows accurate control of the process parameters. We employ continuous electrochemical delamination, known as “bubble transfer”, to eliminate chemical etchant waste and enable the continuous transfer of 2D materials from metal foils. This also makes our transfer method a renewable and environmental friendly process. We investigate the surface topology as well as the electrical parameters of roll-to-roll transferred graphene on polyethylene terephthalate (PET) coated with ethylene-vinyl acetate (EVA). Furthermore, we demonstrate for the first time the stacking of two layers of graphene or graphene on hBN by repeated lamination and delamination onto EVA/PET. These results are an important contribution to creating low-cost, large scale and flexible electronics based on 2D materials.
    Citation
    Hempel M, Lu A-Y, Hui F, Kpulun T, Lanza M, et al. (2018) Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 10: 5522–5531. Available: http://dx.doi.org/10.1039/c7nr07369k.
    Sponsors
    The authors acknowledge financial support from Eni S.p.A. under the Eni-MIT Solar Frontiers Center, the Air Force Office of Scientific Research under the MURI-FATE program, Grant No. FA9550-15-1-0514, the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, the King Abdullah University of Science and Technology for support under contract (OSR-2015-CRG4-2634) and the ONR PECASE program.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Nanoscale
    DOI
    10.1039/c7nr07369k
    ae974a485f413a2113503eed53cd6c53
    10.1039/c7nr07369k
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.