• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A quantitative and spatially-resolved accounting of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Draguta, Sergiu
    Christians, Jeffrey A
    Morozov, Yurii V
    Mucunguzi, Anselme.
    Manser, Joseph S
    Kamat, Prashant V
    Luther, Joseph M
    Kuno, Masaru K.
    KAUST Grant Number
    OCRF-2014-CRG3-2268
    Date
    2018
    Permanent link to this record
    http://hdl.handle.net/10754/629744
    
    Metadata
    Show full item record
    Abstract
    Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley−Queisser limit of 31%. To increase these PCE values, there is pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic accounting of charge recombination processes in high efficiency (18-19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the first time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially-resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.
    Citation
    Draguta S, Christians JA, Morozov YV, Mucunzi A, Manser JS, et al. (2018) A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy & Environmental Science 11: 960–969. Available: http://dx.doi.org/10.1039/c7ee03654j.
    Sponsors
    This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under award DE-SC0014334. PVK additionally acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences under award DE-FC02-04ER15533, Office of Basic Energy Sciences, U.S. Department of Energy. We also thank the Notre Dame Radiation Laboratory (NDRL) for use of its facilities. The NDRL is supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FC02- 04ER15533. JAC was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Solar Energy Technologies Office administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE under DOE contract number DE-SC00014664. We thank Bobby To for assistance with SEM imaging and Sanjini Nanayakkara for assistance with AFM imaging. JM and AM acknowledge support of King Abdullah University of Science and Technology (KAUST) through the Award OCRF-2014-CRG3-2268. JML acknowledges support from the hybrid perovskite solar cell program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office under Contract No. DEAC36- 08-GO28308. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Energy & Environmental Science
    DOI
    10.1039/c7ee03654j
    ae974a485f413a2113503eed53cd6c53
    10.1039/c7ee03654j
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.