Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2

Abstract
Spin–orbit torque has recently been intensively investigated for the purposes of manipulating the magnetization in magnetic nano-devices and understanding fundamental physics. Therefore, the search for novel materials or material combinations that exhibit a strong enough spin-torque effect has become one of the top priorities in this field of spintronics. Weyl semimetal, a new topological material that features open Fermi arc with strong spin–orbit coupling and spin–momentum locking effect, is naturally expected to exhibit an enhanced spin-torque effect in magnetic nano-devices. Here we observe a significantly enhanced spin conductivity, which is associated with the field-like torque at low temperatures. The enhancement is obtained in the b-axis WTe2/Py bilayers of nano-devices but not observed in the a-axis of WTe2/Py nano-devices, which can be ascribed to the enhanced spin accumulation by the spin–momentum locking effect of the Fermi arcs of the Weyl semimetal WTe2.

Citation
Li P, Wu W, Wen Y, Zhang C, Zhang J, et al. (2018) Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nature Communications 9. Available: http://dx.doi.org/10.1038/s41467-018-06518-1.

Acknowledgements
We would like to thank Prof. Zhixun Shen and Prof. Arun Bansil for their useful discussions. We thank Y.L. Zhao, J.L. Zhang, and Q. Zhang for the useful discussions and some experimental support. The work reported was funded by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under the Award Nos. CRF-2015-SENSORS-2709 (KAUST) and CRF-2015-2626-RG4.

Publisher
Springer Nature

Journal
Nature Communications

DOI
10.1038/s41467-018-06518-1

Additional Links
https://www.nature.com/articles/s41467-018-06518-1

Permanent link to this record