Show simple item record

dc.contributor.authorOvcharenko, Oleg
dc.contributor.authorKazei, Vladimir
dc.contributor.authorPeter, Daniel
dc.contributor.authorAlkhalifah, Tariq Ali
dc.date.accessioned2018-09-03T13:20:53Z
dc.date.available2018-09-03T13:20:53Z
dc.date.issued2018-09-07
dc.identifier.citationOvcharenko O, Kazei V, Peter D, Alkhalifah T (2018) Variance-based model interpolation for improved full-waveform inversion in the presence of salt bodies. GEOPHYSICS: 1–60. Available: http://dx.doi.org/10.1190/geo2017-0575.1.
dc.identifier.issn0016-8033
dc.identifier.issn1942-2156
dc.identifier.doi10.1190/geo2017-0575.1
dc.identifier.urihttp://hdl.handle.net/10754/628398
dc.description.abstractWhen present in the subsurface salt bodies impact the complexity of wave-equation-based seismic imaging techniques, such as least-squares reverse-time migration, and full-waveform inversion (FWI). Typically, the Born approximation used in every iteration of least-squares-based inversions is incapable of handling the sharp, high-contrast boundaries of salt bodies. We develop a variance-based method for reconstruction of velocity models to resolve the imaging and inversion issues caused by salt bodies. Our main idea lies in retrieving useful information from independent updates corresponding to FWI at different frequencies. After several FWI iterations we compare the model updates by considering the variance distribution between them to identify locations most prone to cycle skipping. We interpolate velocities from the surrounding environment into these high-variance areas. This approach allows the model to gradually improve from identifying easily resolvable areas and extrapolating the model updates from those to the areas that are difficult to resolve at early FWI iterations. In numerical tests, our method demonstrates the ability to obtain convergent FWI results at higher frequencies.
dc.description.sponsorshipWe are grateful to Prof. Gerhard Pratt for comments and references on the nature of cycleskipping artifacts, as well as to Tristan Van Leuween whose open source FWI code was used as a building block in our inversion scheme (https://github.com/tleeuwen/SimpleFWI). We also thank Anatoly Baumstein, Je↵rey Shragge and three anonymous reviewers for their suggestions and comments that helped to improve the manuscript. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). We thank members of the seismic wave analysis group (SWAG) and the seismic modeling and inversion group (SMI) at KAUST for constructive discussions.
dc.publisherSociety of Exploration Geophysicists
dc.relation.urlhttps://library.seg.org/doi/10.1190/geo2017-0575.1
dc.rightsArchived with thanks to GEOPHYSICS
dc.titleVariance-based model interpolation for improved full-waveform inversion in the presence of salt bodies
dc.typeArticle
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentExtreme Computing Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSeismic Wave Analysis Group
dc.identifier.journalGEOPHYSICS
dc.eprint.versionPost-print
kaust.personOvcharenko, Oleg
kaust.personKazei, Vladimir
kaust.personPeter, Daniel
kaust.personAlkhalifah, Tariq Ali
refterms.dateFOA2018-09-11T07:49:43Z
dc.date.published-online2018-09-07
dc.date.published-print2018-09


Files in this item

Thumbnail
Name:
geo2017-0575.1.pdf
Size:
2.906Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record