Hydrogen atom induced magnetic behaviors in two-dimensional materials: Insight on origination in the model of α-MoO3

Abstract
Atomic layered two-dimensional (2D) materials have become fascinating research topics due to their intriguing performances, but the limitation of nonmagnetic properties hinders their further applications. Developing versatile strategies endowing 2D materials with ferromagnetism is one of the main trends in current research studies. Herein, a hydrogen plasma strategy is introduced to dope hydrogen (H) atoms into the prototypical layered α-MoO3 nanosheets, by which ferromagnetic and exchange bias (EB) effects can be induced by H atom doping into α-MoO3 to form HxMoO3. These effects were interpreted by density functional theory (DFT) calculations. We find that H atom doping can introduce unoccupied states and induce a net magnetic moment localized on the d orbital of the Mo atom, because of the generated asymmetric distribution of electronic states on the Mo atom near the Fermi level. Moreover, the saturation magnetization and the EB field (He) of hydrogenated α-MoO3 are found to be tunable through altering the amount of H dopant. This work provides new perspectives for the effective manipulation of ferromagnetism and exchange interaction through H doping. We hope that the presented hydrogenation strategy is applicable for other kinds of 2D materials.

Citation
Zhang J, Fu J, Shi F, Peng Y, Si M, et al. (2018) Hydrogen atom induced magnetic behaviors in two-dimensional materials: insight on origination in the model of α-MoO3. Nanoscale 10: 14100–14106. Available: http://dx.doi.org/10.1039/c8nr02670j.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11604130, 51601082 and 51771085), the Fundamental Research Funds for the Central Universities (lzujbky-2015-304 and lzujbky-2015-305) and Open Project of Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University (LZUMMM2018013).

Publisher
Royal Society of Chemistry (RSC)

Journal
Nanoscale

DOI
10.1039/c8nr02670j

Additional Links
http://pubs.rsc.org/en/content/articlehtml/2018/nr/c8nr02670j

Permanent link to this record