Show simple item record

dc.contributor.advisorBisetti, Fabrizio
dc.contributor.authorLuca, Stefano
dc.date.accessioned2018-07-29T09:04:22Z
dc.date.available2018-07-29T09:04:22Z
dc.date.issued2018-06
dc.identifier.doi10.25781/KAUST-811IW
dc.identifier.urihttp://hdl.handle.net/10754/628054
dc.description.abstractMethane/air premixed and partially premixed turbulent flames at high Reynolds number are characterized using Direct Numerical Simulations (DNS) with detailed chemistry in a spatially evolving slot Bunsen configuration. Two sets of simulations are performed. A first set of simulations with fully premixed inlet conditions is considered in order to assess the effect of turbulence on the flame. Four simulations are performed at increasing Reynolds number and up to 22400, defined based on the bulk velocity, slot width, and the reactants' properties, and 22 billion grid points, making it one of the largest simulations in turbulent combustion. The simulations feature finite rate chemistry with a 16 species mechanism. To perform these simulations, few preliminary steps were required: (i) two skeletal mechanisms were developed reducing GRI-3.0; (ii) a convergence study is performed to select the proper spatial and temporal discretization and (iii) simulations of fully developed turbulent channel flows are preformed to generate the inlet conditions of the jet. The study covers different aspects of flame-turbulence interaction. It is found that the thickness of the reaction zone is similar to that of a laminar flame, while the preheat zone has a lower mean temperature gradient, indicating flame thickening. The characteristic length scales of turbulence are investigated and the effect of the Reynolds number on these quantities is assessed. The tangential rate of strain is responsible for the production of flame surface in the mean and surface destruction is due to the curvature term. A second set of simulations with inhomogeneous inlet conditions is performed to study how partial premixing and turbulence interact with the flame and with each other. The jet Reynolds number is 5600, and a 33 species mechanism is used. The effect of the inlet fluctuations is reflected on heat release rate fluctuations, however the conditional mean is not affected. The flames show thickening of the preheat zone, and for the lowest level of mixing a slight thickening of the reaction zone is observed. The effect of partially mixed mixture on the NOx formation is analyzed and no major impact was found.
dc.language.isoen
dc.subjectturbulent combustion
dc.subjectdirect numerical simulations
dc.subjectpremixed flames
dc.subjectpartially premixed flames
dc.titlePremixed and Partial Premixed Turbulent Flames at High Reynolds Number
dc.typeDissertation
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberKnio, Omar
dc.contributor.committeememberHawkes, Evatt
dc.contributor.committeememberRoberts, William L.
thesis.degree.disciplineMechanical Engineering
thesis.degree.nameDoctor of Philosophy
refterms.dateFOA2018-07-29T09:04:22Z


Files in this item

Thumbnail
Name:
StefanoLucaDissertationJuly2018.pdf
Size:
21.44Mb
Format:
PDF
Description:
Dissertation_Stefano Luca

This item appears in the following Collection(s)

Show simple item record