Numerically investigating the effects of gasoline surrogate physical and chemical properties in a gasoline compression ignition (GCI) engine
Name:
Nour Elsagan Final Paper.pdf
Size:
5.475Mb
Format:
PDF
Description:
Nour Attef Elsaga - Final Paper
Type
DissertationAuthors
Atef, Nour
Advisors
Sarathy, Mani
Committee members
Johansson, Bengt
Peinemann, Klaus-Viktor

Im, Hong G.

Mehl, Marco
KAUST Department
Physical Science and Engineering (PSE) DivisionDate
2018-06Embargo End Date
2019-07-04Permanent link to this record
http://hdl.handle.net/10754/628032
Metadata
Show full item recordAccess Restrictions
At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2019-07-04.Abstract
Gasoline compression ignition (GCI) engines show promise in meeting stringent new environmental regulations, as they are characterized by high efficiency and low emissions. Simulations using chemical kinetic models provide an important platform for investigating the behaviors of the fuels inside these engines. However, because real fuels are complex, simulations require surrogate mixtures of small numbers of species that can replicate the properties of real fuels. Accordingly, the development of high fidelity, well-validated kinetic models for surrogates is critical in order to accurately replicate the combustion chemistry of different fuels under engine-related conditions. This work focuses on the development of combustion kinetic models to better understand gasoline fuel combustion in GCI engines. An updated iso-octane detailed kinetic model was developed based on new thermodynamic group values and recently evaluated rate coefficients from literature. The model was validated against a wide range of experimental data and conditions. The iso-octane model was further used in 0D simulations for a homogeneous charge compression ignition (HCCI) engine. The results showed that the low-temperature heat release in engines increases with engine boosting when the addition of alky radicals to molecular oxygen is more favored. Ethanol addition was also found to act as a radical sink which inhibits the radical pool formation and results in lower reactivity. Although detailed models provide clarification of the combustion chemistry, their high computational cost impedes their utilization in 3-D engine simulations. Hence, a reduced model for toluene primary reference fuels was developed and validated against ignition delay time and flame speed experiments from literature. The model was then used in numerically investigating the effects of the fuel’s physical properties using hollow-cone and multi-hole injectors in a partially premixed compression ignition (PPCI) engine. It was concluded that the effects of physical properties are evident in multi-hole injection cases, which is attributable to the differences in mixture stratification. Finally, reduced models for multi-components surrogates for three full-blend fuels (light naphtha-Haltermann straight-run naphtha and GCI fuels) were developed. The models were validated against ignition delay time experiments from the literature and tested in 3D engine simulations.ae974a485f413a2113503eed53cd6c53
10.25781/KAUST-42450