• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MohammadAzadThesis.pdf
    Size:
    1.244Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Azad, Mohammad cc
    Advisors
    Moshkov, Mikhail cc
    Committee members
    Bajic, Vladimir B. cc
    Zhang, Xiangliang cc
    Boros, Endre
    Program
    Computer Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2018-06-06
    Permanent link to this record
    http://hdl.handle.net/10754/628023
    
    Metadata
    Show full item record
    Abstract
    Decision trees are one of the most commonly used tools in decision analysis, knowledge representation, machine learning, etc., for its simplicity and interpretability. We consider an extension of dynamic programming approach to process the whole set of decision trees for the given decision table which was previously only attainable by brute-force algorithms. We study decision tables with many-valued decisions (each row may contain multiple decisions) because they are more reasonable models of data in many cases. To address this problem in a broad sense, we consider not only decision trees but also inhibitory trees where terminal nodes are labeled with “̸= decision”. Inhibitory trees can sometimes describe more knowledge from datasets than decision trees. As for cost functions, we consider depth or average depth to minimize time complexity of trees, and the number of nodes or the number of the terminal, or nonterminal nodes to minimize the space complexity of trees. We investigate the multi-stage optimization of trees relative to some cost functions, and also the possibility to describe the whole set of strictly optimal trees. Furthermore, we study the bi-criteria optimization cost vs. cost and cost vs. uncertainty for decision trees, and cost vs. cost and cost vs. completeness for inhibitory trees. The most interesting application of the developed technique is the creation of multi-pruning and restricted multi-pruning approaches which are useful for knowledge representation and prediction. The experimental results show that decision trees constructed by these approaches can often outperform the decision trees constructed by the CART algorithm. Another application includes the comparison of 12 greedy heuristics for single- and bi-criteria optimization (cost vs. cost) of trees. We also study the three approaches (decision tables with many-valued decisions, decision tables with most common decisions, and decision tables with generalized decisions) to handle inconsistency of decision tables. We also analyze the time complexity of decision and inhibitory trees over arbitrary sets of attributes represented by information systems in the frameworks of local (when we can use in trees only attributes from problem description) and global (when we can use in trees arbitrary attributes from the information system) approaches.
    Citation
    Azad, M. (2018). Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions. KAUST Research Repository. https://doi.org/10.25781/KAUST-E3NLJ
    DOI
    10.25781/KAUST-E3NLJ
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-E3NLJ
    Scopus Count
    Collections
    PhD Dissertations; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.