• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Hyperbranched Polyethylenebased Macromolecular Architectures: Synthesis, Characterization, and Selfassembly

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ahlam Alsulami-Thesis-2018-sign-lib-27-May.pdf
    Size:
    4.853Mb
    Format:
    PDF
    Description:
    Ahlam Al-Sulami - Final Paper
    Download
    Type
    Dissertation
    Authors
    Al-Sulami, Ahlam cc
    Advisors
    Hadjichristidis, Nikos cc
    Committee members
    Nunes, Suzana Pereira cc
    Rodionov, Valentin cc
    Avgeropoulos, Apostolos cc
    Program
    Chemical Science
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2018-05
    Embargo End Date
    2019-05-29
    Permanent link to this record
    http://hdl.handle.net/10754/627965
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2019-05-29.
    Abstract
    "Chain walking” catalytic polymerization CWCP is a powerful tool for the one-pot synthesis of a unique class of hyperbranched polyethylene HBPE-based macromolecules with a controllable molecular weight, topology, and composition. This dissertation focuses on new synthetic routes to prepare HBPE-based macromolecular architectures by combining the CWCP technique with ring opening polymerization ROP, atom–transfer radical polymerization ATRP, and “click” chemistry. Taking advantage of end-functionalized HBPE, and a new ethynyl-soketal star-shape agent, we were able to synthesize different types of the HBPE-based architectures including hyperbranched-on-hyperbranched core-shell nanostructure, and miktoarm-star-HBPE-based block copolymers. The first part of the dissertation provides a general introduction to the synthesis of polyethylene types with controllable structures. Well-defined polyethylene with different macromolecule architectures were synthesized either for academic or industrial purposes. In the second part, the HBPE with different topologies was synthesized by CWCP, using a α-diimine Pd (II) catalyst. The effect of the temperature and pressure on the catalyst activity and polymer properties, including branch content, molecular weight, distribution, and thermal properties were studied. Two series of samples were synthesized: a) serial samples (A) under pressures of 1, 5, and 27 atm at 5˚C, and b) serial samples (B) at temperatures of 5, 15, and 35 ˚C under 5 atm. Proton nuclear magnetic resonance spectroscopy, 1H NMR, and gel permeation chromatography, GPC, analysis were used to calculate the branching content, molecular weight, and distribution, whereas differential scanning calorimetry, DSC, was used to record the melting and glass transition temperatures as well as the degree of the crystallinity. Well-defined HBPE-based core diblock copolymers with predictable amphiphilic properties are studied in the third part of the project. Hyperbranched polyethylene-b-poly(N-isopropylacrylamide), HBPE-b-PNIPAM, and hyperbranched polyethylene-b-poly(solketal acrylate), HBPE-b-PSA, were successfully synthesized by combining CWCP and ATRP. The synthetic methodology includes the following steps; a) synthesis of multifunction hyperbranched polyethylene initiators HBPE-MI by direct copolymerization of ethylene with 2-(2-bromoisobutyryloxy)ethyl acrylate BIEA in the presence of a α-diimine Pd(II) catalyst, and b) HBPE-MI with α-bromoester groups used as initiation sites for ATRP. Proton nuclear magnetic resonance spectroscopy, 1H NMR, gel permeation chromatography,GPC, and Fourier transform infrared, FT-IR, spectroscopy, were used for determining the molecular and composition structures. Also, differential scanning calorimetry, DSC, and thermogravimetric analysis, TGA, were used to record the melting temperature and to study the thermal stability, respectively. In the fourth part, a well-defined 3-miktoarm star copolymer 3μ-HBPE(PCL)2 (HBPE: hyperbranched polyethylene, PCL: poly(ε-caprolactone) was synthesized by combining CWCP, ring opening polymerization, ROP, and “click” chemistry. The synthetic methodology includes the following steps: a) synthesis of azido-functionalized hyperbranched polyethylene HBPE-N3 by CWCP of ethylene with the α-diimine Pd(II) catalyst, followed by quenching with an excess of 4-vinylbenzyl chloride and transformation of –Cl to the azido group with sodium azide, b) synthesis of in-chain ethynyl-functionalized poly(ε-caprolactone), (PCL)2-C≡CH by ROP of ε-CL with ethynylfunctionalized solketal [3-(prop-2-yn-1-yloxy) propane-1,2-diol] as a bifunctional initiator, in the presence of P2-t-Bu phosphazene super base, and c) “clicking” HBPE-N3 and (PCL)2-C≡CH using the copper(I)-catalyzed alkyne–azide cycloaddition CuAAC. Proton nuclear magnetic resonance spectroscopy, 1H NMR, gel permeation chromatography, GPC, and Fourier transform infrared, FT-IR, spectroscopy, were used to determine the molecular and composition structures. Also, the differential scanning calorimetry, DSC, was used to record the melting point temperature. The fifth part illustrates the self-assembly behavior of the HBPE-based block copolymers of poly(N-isopropylacrylamide), NIPAM, and poly(ε-caprolactone), PCL, at room temperature in water and a petroleum ether-selective solvent for NIPAM and PCL respectively. The synthesized copolymers HBPE-b-NIPAM and 3μ-HBPE(PCL)2 revealed either core-shell nanostructure in vesicles or worms and worm-likes branches, as confirmed by combining the analysis of dynamic light scattering, DLS, transmission electron microscopy, TEM, and atomic force spectroscopy, AFM. All the findings presented in this dissertation emphasize the utility of "living" CWCP to synthesize end-functionalized HBPE, and new star-linkage HBPE-based complex architectures. The summary and future works concerning predictable properties and applications are discussed in the sixth part.
    Citation
    Al-Sulami, A. (2018). Hyperbranched Polyethylenebased Macromolecular Architectures: Synthesis, Characterization, and Selfassembly. KAUST Research Repository. https://doi.org/10.25781/KAUST-07B9K
    DOI
    10.25781/KAUST-07B9K
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-07B9K
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.