Show simple item record

dc.contributor.advisorVoolstra, Christian R.
dc.contributor.authorIslas Morales, Parsifal
dc.date.accessioned2018-05-20T10:00:47Z
dc.date.available2019-05-17T00:00:00Z
dc.date.issued2018-04
dc.identifier.citationIslas Morales, P. (2018). Nanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology. KAUST Research Repository. https://doi.org/10.25781/KAUST-6Y110
dc.identifier.doi10.25781/KAUST-6Y110
dc.identifier.urihttp://hdl.handle.net/10754/627920
dc.description.abstractIs the nucleolus a sine qua non condition of eukaryotes? The present project starts from this central question to contribute to our knowledge about the origin and the evolution of the cells. The nucleolus is a cryptic organelle that plays a central role in cell function. It is responsible for the orchestration of ribosomal RNA expression, maturation and modification in the regulatory context of cellular homeostasis. Ribosomal expression is undoubtedly the greatest transcriptional and regulatory activity of any cell. The nucleolus is not just a conventional organelle –membrane-limited-, but a magnificent transcriptional puff: a dichotomy between structure and process, form and function. What is the minimum nucleolus? Evolution should bring some light into these questions. Evolutionary cell biology (ECB) has raised increasing attention in the last decades. Is this a new discipline and an historical opportunity to combine functional and evolutionary biology towards the insight that cell evolution underlies organismic complexity? In the post-genomic era, we have developed the potential of combining high throughput acquisition of data with functional in situ and in sillico approaches: integration understood as omics approaches. Can this provide a real consilience between evolutionary and functional approaches? The reduced number of model organisms and cultivation techniques still excludes the majority of the extant diversity of cells from the scope of experimental inquiry. Furthermore, at the conceptual level, the simplification of evolutionary processes in biosciences still limits the conformation of a successful disciplinary link between functional and evolutionary biology. This limits the formulation of questions and experiments that properly address the mechanistic nature of cellular events that underlie microbial and organismic diversity and evolution. Here we provide a critical and comparative review to the historical background of ECB. This project takes the lessons learned from ECB and attempts to find a homologue structure of the eukaryotic nucleolus within the Archaea. We found nanometric structures in S. solfactarius that either are positive to specific nucleolar techniques such as Nucleolar organizer regions NOR silver staining. These is structures are novel and its significance should be revised on the evolutionary cell biology perspective.
dc.language.isoen
dc.subjectNucleolus
dc.subjectEvolution
dc.subjectTEM
dc.subjectArchaea
dc.subjectAgNOR
dc.subjectEvolutionary Cell Biology
dc.titleNanoscopical dissection of ancestral nucleoli in Archaea: a case of study in Evolutionary Cell Biology
dc.typeThesis
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.rights.embargodate2019-05-17
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberGarcía, Luis Felipe Jimenez
dc.contributor.committeememberAranda, Manuel
dc.contributor.committeememberGojobori, Takashi
thesis.degree.disciplineMarine Science
thesis.degree.nameMaster of Science
dc.rights.accessrightsAt the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2019-05-17.
refterms.dateFOA2019-05-17T00:00:00Z


Files in this item

Thumbnail
Name:
PARSIFAL ISLAS MORALES MASTER THESIS_Final.pdf
Size:
37.44Mb
Format:
PDF
Description:
PARSIFAL ISLAS MORALES MASTER THESIS_Final

This item appears in the following Collection(s)

Show simple item record