• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    EdwingGrajalesThesis (1).pdf
    Size:
    3.182Mb
    Format:
    PDF
    Description:
    Edwing Gonzales - Final Thesis Paper
    Download
    Type
    Thesis
    Authors
    Grajales Gonzalez, Edwing cc
    Advisors
    Sarathy, Mani cc
    Committee members
    Peinemann, Klaus-Viktor cc
    Cavallo, Luigi cc
    Program
    Chemical and Biological Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2018-05
    Permanent link to this record
    http://hdl.handle.net/10754/627914
    
    Metadata
    Show full item record
    Abstract
    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption. In the combustion and pyrolysis batch reactor simulations, using all the rate constants computed in this work, H-assisted reactions are limited because H radicals become abundant once the propen-2-ol has been consumed by other reactions, such as the non-catalyzed tautomerism i-C3H5OH⟺CH3COCH3, which becomes one of the main source of acetone. The intermediate radical (CH3ĊOHCH3) is formed exclusively from tert-butanol, with its concentration in 2-butanol oxidation being smaller because the secondary alcohol is unable to produce the radical directly. In all cases, the intermediate is converted effectively to acetone.
    Citation
    Grajales Gonzalez, E. (2018). Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol. KAUST Research Repository. https://doi.org/10.25781/KAUST-CZ942
    DOI
    10.25781/KAUST-CZ942
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-CZ942
    Scopus Count
    Collections
    Theses; Theses; Physical Science and Engineering (PSE) Division; Chemical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.