Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
KAUST Grant Number
OSR-2015-CRG4-2582Date
2018-04-06Online Publication Date
2018-04-06Print Publication Date
2018-06Permanent link to this record
http://hdl.handle.net/10754/627864
Metadata
Show full item recordAbstract
Accurate detection of changes in land cover leads to better understanding of the dynamics of landscapes. This letter reports the development of a reliable approach to detecting changes in land cover based on remote sensing and radiometric data. This approach integrates the multivariate exponentially weighted moving average (MEWMA) chart with support vector machines (SVMs) for accurate and reliable detection of changes to land cover. Here, we utilize the MEWMA scheme to identify features corresponding to changed regions. Unfortunately, MEWMA schemes cannot discriminate between real changes and false changes. If a change is detected by the MEWMA algorithm, then we execute the SVM algorithm that is based on features corresponding to detected pixels to identify the type of change. We assess the effectiveness of this approach by using the remote-sensing change detection database and the SZTAKI AirChange benchmark data set. Our results show the capacity of our approach to detect changes to land cover.Citation
Zerrouki N, Harrou F, Sun Y (2018) Statistical Monitoring of Changes to Land Cover. IEEE Geoscience and Remote Sensing Letters: 1–5. Available: http://dx.doi.org/10.1109/LGRS.2018.2817522.Sponsors
This work was supported by the Office of Sponsored Research (OSR), King Abdullah University of Science and Technology under Award OSR-2015-CRG4-2582.Additional Links
https://ieeexplore.ieee.org/document/8332536/ae974a485f413a2113503eed53cd6c53
10.1109/LGRS.2018.2817522