Show simple item record

dc.contributor.authorSrinivas, C.V.
dc.contributor.authorYesubabu, V.
dc.contributor.authorDasari, Hari Prasad
dc.contributor.authorHari Prasad, K.B.R.R.
dc.contributor.authorGreeshma, M.M.
dc.contributor.authorBaskaran, R.
dc.contributor.authorVenkatraman, B.
dc.date.accessioned2018-05-14T13:37:07Z
dc.date.available2018-05-14T13:37:07Z
dc.date.issued2018-05-04
dc.identifier.citationSrinivas CV, Yesubabu V, Hari Prasad D, Hari Prasad KBRR, Greeshma MM, et al. (2018) Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics. Atmospheric Research 210: 66–82. Available: http://dx.doi.org/10.1016/j.atmosres.2018.04.014.
dc.identifier.issn0169-8095
dc.identifier.doi10.1016/j.atmosres.2018.04.014
dc.identifier.urihttp://hdl.handle.net/10754/627862
dc.description.abstractIn this study, the heavy precipitation event on 01 December 2015 over Chennai located on the southeast coast of India was simulated using the Weather Research and Forecast (WRF) model. A series of simulations were conducted using explicit convection and varying the planetary boundary layer (PBL) parameterization schemes. The model results were compared with available surface, satellite and Doppler Weather Radar observations. Simulations indicate strong, sustained moist convection associated with development of a mesoscale upper air cyclonic circulation, during the passage of a synoptic scale low-pressure trough caused heavy rainfall over Chennai and its surroundings. Results suggest that veering of wind with height associated with strong wind shear in the layer 800–400 hPa together with dry air advection facilitated development of instability and initiation of convection. The 1-km domain using explicit convection improved the prediction of rainfall intensity of about 450 mm and its distribution. The PBL physics strongly influenced the rainfall prediction by changing the location of upper air circulation, energy transport, moisture convergence and intensity of convection in the schemes YSU, MYJ and MYNN. All the simulations underestimated the first spell of the heavy rainfall. While YSU and MYJ schemes grossly underestimated the rainfall and dislocated the area of maximum rainfall, the higher order MYNN scheme simulated the rainfall pattern in better agreement with observations. The MYNN showed lesser mixing and simulated more humid boundary layer, higher convective available potential energy (CAPE) and stronger winds at mid-troposphere than did the other schemes. The MYNN also realistically simulated the location of upper air cyclonic flow and various dynamic and thermodynamic features. Consequently it simulated stronger moisture convergence and higher precipitation.
dc.description.sponsorshipThe authors wish to thank Director IGCAR for encouragement and support. The GPM-IMERG data was obtained from NASA's Precipitation Processing Center. Authors thank the India Meteorological Department for providing the Doppler Weather Radar products, Automatic Weather Station (AWS) and Rain-gauge data. The Tamil Nadu Agriculture University (TNAU) is acknowledged for providing the rainfall observations. The authors are thankful to the two anonymous reviewers for their careful reading and suggestions which greatly improved the content of the paper.
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0169809517302879
dc.subjectHeavy precipitation
dc.subjectLow-pressure trough
dc.subjectPBL physics
dc.subjectGrid resolution
dc.subjectWRF
dc.titleSimulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics
dc.typeArticle
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.identifier.journalAtmospheric Research
dc.contributor.institutionRadiological Safety Division, HSEG, Indira Gandhi Centre for Atomic Research, Hombi Bhabha National Institute, Kalpakkam 603102, India
dc.contributor.institutionNational Atmospheric Research Laboratory (NARL), Department of Space (DoS), Govt. of India, Gadanki 517 112, Chittoor District, Andhra Pradesh, India
kaust.personDasari, Hari Prasad
dc.date.published-online2018-05-04
dc.date.published-print2018-09


This item appears in the following Collection(s)

Show simple item record