Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks
Type
Conference PaperAuthors
Alqerm, Ismail
Shihada, Basem

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionComputer Science Program
Date
2018-02-15Online Publication Date
2018-02-15Print Publication Date
2017-10Permanent link to this record
http://hdl.handle.net/10754/627848
Metadata
Show full item recordAbstract
Heterogeneous cloud radio access networks (H-CRAN) is a new trend of 5G that aims to leverage the heterogeneous and cloud radio access networks advantages. Low power remote radio heads (RRHs) are exploited to provide high data rates for users with high quality of service requirements (QoS), while high power macro base stations (BSs) are deployed for coverage maintenance and low QoS users support. However, the inter-tier interference between the macro BS and RRHs and energy efficiency are critical challenges that accompany resource allocation in H-CRAN. Therefore, we propose a centralized resource allocation scheme using online learning, which guarantees interference mitigation and maximizes energy efficiency while maintaining QoS requirements for all users. To foster the performance of such scheme with a model-free learning, we consider users' priority in resource blocks (RBs) allocation and compact state representation based learning methodology to enhance the learning process. Simulation results confirm that the proposed resource allocation solution can mitigate interference, increase energy and spectral efficiencies significantly, and maintain users' QoS requirements.Citation
AlQerm I, Shihada B (2017) Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Available: http://dx.doi.org/10.1109/PIMRC.2017.8292227.Conference/Event name
28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017Additional Links
https://ieeexplore.ieee.org/document/8292227/ae974a485f413a2113503eed53cd6c53
10.1109/PIMRC.2017.8292227