Show simple item record

dc.contributor.authorDai, Qingqing
dc.contributor.authorLüders, Ulrike
dc.contributor.authorFrésard, Raymond
dc.contributor.authorEckern, Ulrich
dc.contributor.authorSchwingenschlögl, Udo
dc.date.accessioned2018-05-14T13:37:05Z
dc.date.available2018-05-14T13:37:05Z
dc.date.issued2018-05-04
dc.identifier.citationDai Q, Lüders U, Frésard R, Eckern U, Schwingenschlögl U (2018) Electronic Reconstruction in (LaVO3 ) m /SrVO3 ( m = 5, 6) Superlattices. Advanced Materials Interfaces: 1701169. Available: http://dx.doi.org/10.1002/admi.201701169.
dc.identifier.issn2196-7350
dc.identifier.doi10.1002/admi.201701169
dc.identifier.urihttp://hdl.handle.net/10754/627845
dc.description.abstractThe (LaV3+O3)m/SrV4+O3 (m = 5, 6) superlattices are investigated by first principles calculations. While bulk LaVO3 is a C-type antiferromagnetic semiconductor and bulk SrVO3 is a paramagnetic metal, semiconducting A-type antiferromagnetic states for both superlattices are found due to epitaxial strain. At the interfaces, however, the V spins couple antiferromagnetically for m = 5 and ferromagnetically for m = 6 (m-dependence of the magnetization). Electronic reconstruction in form of charge ordering is predicted to occur with V3+ and V4+ states arranged in a checkerboard pattern on both sides of the SrO layer. As compared to bulk LaVO3, the presence of V4+ ions introduces in-gap states that strongly reduce the bandgap and influence the orbital occupation and ordering.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). It was also supported by the German Science Foundation (DFG) through TRR 80.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/admi.201701169
dc.subjectLaVO 3
dc.subjectSrVO 3
dc.subjectsuperlattice
dc.subjecttransition metal oxide
dc.titleElectronic Reconstruction in (LaVO3 ) m /SrVO3 ( m = 5, 6) Superlattices
dc.typeArticle
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Materials Interfaces
dc.contributor.institutionNormandie Université; ENSICAEN, UNICAEN, CNRS, CRISMAT; 14000 Caen France
dc.contributor.institutionInstitut für Physik; Universität Augsburg; 86135 Augsburg Germany
kaust.personDai, Qingqing
kaust.personSchwingenschlögl, Udo
dc.date.published-online2018-05-04
dc.date.published-print2018-06


This item appears in the following Collection(s)

Show simple item record