Show simple item record

dc.contributor.authorMajhi, Sanjit Manohar*
dc.contributor.authorNaik, Gautam Kumar*
dc.contributor.authorLee, Hu-Jun*
dc.contributor.authorSong, Ho-Geun*
dc.contributor.authorLee, Cheul-Ro*
dc.contributor.authorLee, In-Hwan*
dc.contributor.authorYu, Yeon-Tae*
dc.date.accessioned2018-05-14T13:37:05Z
dc.date.available2018-05-14T13:37:05Z
dc.date.issued2018-04-25en
dc.identifier.citationMajhi SM, Naik GK, Lee H-J, Song H-G, Lee C-R, et al. (2018) Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors and Actuators B: Chemical 268: 223–231. Available: http://dx.doi.org/10.1016/j.snb.2018.04.119.en
dc.identifier.issn0925-4005en
dc.identifier.doi10.1016/j.snb.2018.04.119en
dc.identifier.urihttp://hdl.handle.net/10754/627840
dc.description.abstractIn this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.en
dc.description.sponsorshipThis work was supported by (1) BK21 plus program from the Ministry of Education and Human Resource Development, (2) National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (BRL No. 2015042417, 2016R1A2B4014090), (3) Business for Academic-industrial Cooperative establishments funded by Korea Small and Medium Business Administration in 2016 (Grant No. C0396231), and (4) Centre for University Research Facility (CURF), CBNU, and Korean Basic Science Institute (KBSI), CBNU branch are acknowledged for the analysis of TEM and HR-TEM, respectively.en
dc.publisherElsevier BVen
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0925400518308244en
dc.subjectAu@NiOen
dc.subjectcore-shell NPsen
dc.subjectbaseline resistanceen
dc.subjectsensitivityen
dc.subjectM@p-MOSen
dc.titleAu@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanismen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division*
dc.contributor.departmentElectrical Engineering Program*
dc.identifier.journalSensors and Actuators B: Chemicalen
dc.contributor.institutionDivision of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University, Jeonju, 561-756, South Korea*
dc.contributor.institutionOgam Technology, Jeonju, 54882, South Korea*
dc.contributor.institutionDepartment of Materials Science and Engineering, Korea University, Seoul 02841, South Korea*
kaust.authorMajhi, Sanjit Manohar*


This item appears in the following Collection(s)

Show simple item record